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Abstract

To assess the dynamic distributional impacts of macroeconomic policy, we pro-
pose quantile policy effects to quantify disparities between the quantiles of potential
outcomes under different policies. We first identify quantile policy effects under the
unconfoundedness assumption and propose an inverse probability weighting estima-
tor. We then examine the asymptotic behavior of the proposed estimator in a time
series framework and suggest a blockwise bootstrap method for inference. Applying
this method, we investigate the effectiveness of US macroprudential actions on bank
credit growth from 1948 to 2017. Empirically, we find that the effects of macro-
prudential policy on credit growth are asymmetric and depend on the quantiles of
credit growth. The tightening of macroprudential actions fails to rein in high credit
growth, whereas easing policies do not effectively stimulate bank credit growth during
low-growth periods. These findings suggest that US macroprudential policies might
not sufficiently address the challenges of soaring bank credit or ensure overarching
financial stability.

Keywords: Causal effects; Impulse response functions; Macroprudential policy; Propensity
score; Quantile functions
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1 Introduction

Since the global financial crisis, economists have renewed their interest in the consequences

of credit expansions. Recent work has shown that excess credit growth increases financial

risk and severely affects the real economy, including in the form of housing market crashes,

banking crises, and economic recessions (e.g., Mian and Sufi, 2009; Schularick and Taylor,

2012; Jordà, Schularick, and Taylor, 2013). In the main, central banks and regulators

rely on macroprudential policy to address these risks, control credit growth, and maintain

stability, with studies focusing on specific countries examining the effects of these policies on

bank credit. For example, Elliott, Feldberg, and Lehnert (2013) develop a US credit policy

index and note that tightening reduces bank credit, but easing has a limited impact, and

Zdzienicka et al. (2015) indicate transient effects. Monnet (2014) combines the narrative

approach and discusses credit controls in France. Elsewhere, Aikman, Bush, and Taylor

(2016) create a credit policy index for the UK revealing strong effects on bank credit.

Kim and Oh (2020) offer results suggesting that macroprudential policy strongly affected

household bank loans in Korea after the 1997 Asian financial crisis.

Numerous empirical studies also examine cross-country experiences to assess the ef-

fectiveness of macroprudential policy in controlling bank credit growth. For example,

Claessens, Ghosh, and Mihet (2013) find that macroprudential policy limits credit growth

and mitigates increases in bank leverage for 2,800 banks in 48 countries. Bruno, Shim, and

Shin (2017) focus on 12 Asia-Pacific economies and find that tightening macroprudential

policy successfully reduces credit growth when reinforcing monetary tightening rather than

when it acts in the opposite direction. Using a sample of 119 countries, Cerutti, Claessens,

and Laeven (2017) and Cizel et al. (2019) find that macroprudential policies significantly

reduce bank credit growth, and policy effectiveness depends on the type of country, whereas

Akinci and Olmstead-Rumsey (2018) show that tightening policies reduce bank and housing

credit growth across 57 advanced and emerging countries. Recently, Richter, Schularick,

and Shim (2019) use the local projection technique and suggest that macroprudential policy

lowers real household and mortgage credit in 56 countries.

In addition, several studies examine whether the effect of macroprudential policy varies
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across the credit growth phase. Claessens, Ghosh, and Mihet (2013) find that macropru-

dential policy reduces the growth of bank leverage and assets in boom times, whereas, in

downturns, the effect depends on the type of macroprudential policy. McDonald (2015) re-

veals that tightening actions exert a more considerable impact when credit expands quickly

in 17 economies, and easing actions could then be more effective during downturns. Cerutti,

Claessens, and Laeven (2017) also find that macroprudential policy works poorly during

busts. Lastly, Jiménez et al. (2017) argues that dynamic provisioning in Spain in 2000

halted a credit boom and served as a bad-times buffer. Together, these studies investigate

the relationship between policy influences and past credit growth, rather than gauging their

potential in mitigating upcoming financial boom–bust cycles. Consequently, they may not

fully illuminate the extent to which macroprudential policy could be adept at steering

future financial cycles.

The extant literature highlights a few critical considerations in evaluating macropru-

dential policy effectiveness. First, we need to estimate the causal effects of the actual and

counterfactual reactions of a policy to judge policy effectiveness. Second, we must acknowl-

edge that the effects of macroprudential policy are not instantaneous, but instead permeate

through the economy over time. This temporal factor is of interest to fiscal authorities and

central bankers, underscoring the importance of the dynamic impacts of policy. Third,

our focus should shift from average to distributional effects when assessing policy effective-

ness across the various stages of credit growth. For example, policymakers may be more

interested in a policy’s impact on extreme quantiles of bank credit growth rates as these

represent financial boom and bust cycles. An effective macroprudential policy would then

influence the right tail of credit growth through tightening actions. At the same time,

easing efforts should have a more pronounced effect on the left tail or lower quantiles.

Regarding the first two points, Angrist and Kuersteiner (2011) and Angrist, Jordà,

and Kuersteiner (2018) have expanded the average treatment effect concept to a dynamic

average policy effect, thereby accommodating multiple policy choices within a time series

framework. The dynamic causal effects in Angrist, Jordà, and Kuersteiner (2018) measure

the difference between the average value of the potential outcomes at different forecast

3



horizons.1 Addressing the third point, White, Kim, and Manganelli (2015) propose a mul-

tivariate regression quantile model, which they use to trace the effect on the conditional

quantile function over time. Lee, Kim, and Mizen (2021) utilize the structural vector

autoregression method to estimate the impact of structural shocks on the entire condi-

tional distribution of the observable structural variables, and Chavleishvili and Manganelli

(2017) characterize quantile impulse response functions as the difference between the ex-

pected quantile dynamics with and without structural shocks. Nonetheless, the vector

autoregression model may lead to biased estimation if the model is misspecified. As the

forecast horizon extends, this bias intensifies, potentially presenting a misleading picture

to central banks when evaluating policy impacts.

To address the three points at once, this paper proposes quantile policy effects (QPE)

to evaluate the effectiveness of macroprudential policy on bank credit growth and the finan-

cial cycle. QPE, by quantifying shifts in the distribution of potential outcomes resulting

from policy changes, facilitates an exploration of policy effects across various quantiles of

potential outcomes. They thus provide a more detailed understanding than possible with

only average effects. This is because QPE over time represent the dynamic causal effects

on the distributions of the potential outcomes or the impulse responses of policy. They,

therefore, offer the complete dynamic causal effects of macroeconomic policy and thus

complement the average policy effect in Angrist, Jordà, and Kuersteiner (2018). Assuming

unconfoundedness, we identify QPE and introduce an inverse probability weighted estima-

tor, as conceptualized by Firpo (2007), Cattaneo (2010), and Donald and Hsu (2014).2 We

thus contribute to the literature by extending the asymptotic results of the QPE estimator

from a cross-sectional framework to a time series framework and by providing a blockwise

bootstrap method for inference.
1Several studies apply this approach to assess the impact of policies or events. See e.g., Forbes and

Klein (2015), Forbes, Fratzscher, and Straub (2015), Jordà, Schularick, and Taylor (2016), and Acemoglu

et al. (2019).
2Frölich and Melly (2013) and Hsu, Lai, and Lieli (2022) employ the instrumental variable method

to develop estimators for unconditional quantile treatment effects without the conditional independence

assumption.
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To render a causal interpretation for our QPE, we discuss how the framework of Angrist,

Jordà, and Kuersteiner (2018) can be expressed as the direct potential outcome system

of Rambachan and Shephard (2021) by introducing a structural model of the outcome

variable. We also provide sufficient conditions for the structural model such that the

unconfoundedness assumption holds. In addition, our work quantifies the policy effect

without relying on a specific macroeconomic model, distinguishing it from the quantile

vector autoregression approach embraced by White, Kim, and Manganelli (2015), Lee,

Kim, and Mizen (2021), and Chavleishvili and Manganelli (2017).

Our empirical study utilizes this proposed method to examine whether macroprudential

policy can mitigate high bank credit risk or stimulate low bank credit growth. We focus

on monthly data from the US spanning the period from 1948 to 2017 to evaluate the

impact of three macroprudential actions (tightening, easing, and unchanging) on bank

credit growth, with the unchanging action serving as our counterfactual benchmark policy.

We compute QPE at various quantiles of credit growth and across different time horizons

to evaluate the responses of bank credit growth to macroprudential actions. Our empirical

results reveal the asymmetric impact of macroprudential policy on credit growth, contingent

on both the policy actions and the credit growth quantiles. We also conduct thorough

robustness checks and sensitivity analyses to ensure the reliability of our findings. In

particular, the QPE estimates increase across all quantiles one year after a tightening

action. At the 0.9-th quantile, they even turn positive, suggesting that tightening actions

may unexpectedly fuel high credit growth, and thereby potentially amplifying financial

market risk a year after policy enforcement. The responses remain significantly positive

even two years later at the highest quantiles of credit growth. At lower credit growth

quantiles, easing actions can further depress already low sector growth. This adverse effect

becomes significant 18 months post-implementation. These results highlight the nuanced

effects of macroprudential policies on varied credit growth levels, underscoring potential

risks. Our findings raise concerns about the effectiveness of these policies in mitigating

credit market vulnerabilities.

The remainder of the paper is structured as follows. Section 2 defines QPE and their
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estimation and discusses asymptotic theory and bootstrap techniques of the proposed es-

timators. Section 3 investigates the effectiveness of macroprudential policy on bank credit

growth using the proposed method. Section 4 concludes. The separate supplementary

appendix includes the sensitivity analyses and proofs for all the lemmas and theorems.

2 The Quantile Policy Effect

This section presents the model within a time series framework and defines QPE. We

demonstrate that QPE are identifiable under the assumption of unconfoundedness. To

estimate QPE, we propose an inverse probability weighting method, incorporating a para-

metric specification for the policy propensity score. Further, we analyze the asymptotic

properties of the proposed estimator and offer a blockwise bootstrap approach for conduct-

ing inference.

2.1 Model Framework

We first introduce the model based on Angrist, Jordà, and Kuersteiner (2018) and then

discuss how this model representation relates to the direct potential outcome system in

Rambachan and Shephard (2021). An observed vector stochastic process can characterize

the economy denoted as χt = (Z
′
t , Yt, D

′
t)

′ . In this representation, Yt refers to an outcome

variable that researchers are interested in. The vector Zt represents a vector of predeter-

mined variables before time t, also known as covariates, and Zt is of kz dimensions with

kz <∞. We allow Zt to include lagged outcome variables, but not lagged policy variables.

Let Dt represent the policy variable with values drawn from the set D = {d0, ..., dJ}. In line

with the approach taken by Angrist, Jordà, and Kuersteiner (2018), the realized policy vari-

able Dt is determined by a combination of observed and unobserved variables, as captured

by the relationship Dt = D(Zt, ψ, εt). Let ψ represent a vector of parameters associated

with the policy regime, taking values in a parameter space Ψ. Finally, let εt denote the

policymakers’ idiosyncratic information or taste variables, which are not observable.

Following Angrist and Kuersteiner (2011) and Angrist, Jordà, and Kuersteiner (2018),
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we define Y ψ
t,h(d) as the potential outcome for d ∈ D. Subsequently, the observed outcomes

Yt+h are equal to Y ψ
t,h(d) if Dt is equal to d. This relationship can be expressed as:

Yt+h =
∑
d∈D

Y ψ
t,h(d) · 1{Dt = d}. (1)

In Equation (1), the indicator function 1{Dt = d} ensures that the potential outcome

Y ψ
t,h(d) is included in the summation only if Dt is equal to d.

In policy evaluation, it is essential to assess the distributional impacts of policies beyond

their average effects. To capture these impacts, we introduce the distribution function for

Y ψ
t,h(dj) defined as:

F h
j (q, ψ) = P (Y ψ

t,h(dj) ≤ q),

where j represents all possible policy choices within the set {0, · · · , J}, and ψ is fixed in

the parameter space Ψ. This distribution function F h
j (q, ψ) calculates the probability that

the potential outcome Y ψ
t,h(dj) is less than or equal to a given value q. To analyze the

distribution further, we can examine specific quantiles. Let τ be a quantile within the

interval (0, 1). We define the quantile function Qh
j (τ, ψ) for τ ∈ (0, 1) of the distribution

function F h
j (q, ψ) as follows:

Qh
j (τ, ψ) = inf{q : F h

j (q, ψ) ≥ τ}.

The quantile function identifies the lowest value q for which the distribution function ex-

ceeds or equals τ .

To quantify the QPE at the τ quantile, we calculate the difference between specific

quantiles of potential outcomes under policies dj and d0 as follows:

∆h
j (τ, ψ) = Qh

j (τ, ψ)−Qh
0(τ, ψ).

This estimand bears a resemblance to the quantile treatment effect discussed in Firpo

(2007), Cattaneo (2010), and Donald and Hsu (2014). However, our approach is uniquely

suited for analyzing time series data and conducting macroeconomic policy evaluation. The

premise of QPE lies in leveraging the estimands of the distribution function for potential
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outcomes to derive quantile processes associated with differences between specific quantiles

of potential outcomes up to the time horizon H.

QPE thus serve as a quantile-based counterpart to the average policy effect introduced

by Angrist and Kuersteiner (2011) and Angrist, Jordà, and Kuersteiner (2018), wherein we

replace Yt+h with the indicator function 1{Yt+h ≤ q}. Moreover, QPE allow us to assess

the quantile impulse responses to the policy shock, enabling the evaluation of policy effects

across the entire time horizon H. Therefore, if policymakers prioritize understanding of

the distributional impacts or effects on the tails of the outcome distribution, QPE offer

a comprehensive analysis of policy effectiveness. By considering quantiles, QPE provide

valuable insights into policy impacts beyond average effects, making it a valuable tool for

policymakers and researchers alike.

2.2 Identification

Potential outcomes for counterfactual policy choices are inherently unobserved, posing a

challenge for identifying QPE without additional conditions. We introduce the uncon-

foundedness assumption into our framework to address this and to facilitate identification.

Assumption 1 (Unconfoundedness) Y ψ
t,h(dj) ⊥ Dt|Zt for all h ≥ 0 and for all dj, with ψ

fixed, ψ ∈ Ψ.

The unconfoundedness assumption, also referred to as the selection-on-observables as-

sumption or the conditional independence assumption, requires that conditional on ob-

servable variables, the policy assignment is independent of the potential outcomes for all

horizons h ≥ 0. In other words, there should be no systematic relationship between the

policy choice and the potential outcomes after accounting for the observed variables. A

sufficient condition for Assumption 1 is that εt is independent of the potential outcomes

and Zt.

We introduce the policy propensity score denoted as pj(Zt, ψ) = P (Dt = dj|Zt), which

represents the conditional probability of selecting policy choice dj given the observed vari-

ables Zt. The policy propensity score measures the likelihood of policy assignment based

on the observed characteristics.
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Assumption 2 (Overlap) The propensity score function pj(Zt, ψ) > 0 for all Zt and for

all j ∈ {0, · · · , J}. In addition,
∑J

j=0 p
j(Zt, ψ) = 1 for all Zt.

Assumption 2, commonly referred to as the overlap assumption, plays a crucial role

in identification. It ensures that, for any given values of the observed covariates, there

exists a positive probability of observing each policy choice j ∈ {0, · · · , J}. In other

words, the overlap assumption guarantees sufficient variation in the observed covariates

across different policy choices. This assumption assumes sufficient overlap exists in the

distribution of observed covariates across all policy choices.

The following lemma demonstrates the identification of the distribution function of

potential outcomes, F h
j (q, ψ), using the observed data under Assumptions 1 and 2.

Lemma 1 (Identification of distribution functions) Suppose Assumptions 1 and 2 hold.

The distribution function F h
j (q, ψ) can be identified by the observed data as

F h
j (q, ψ) = E

[
1{Dt = dj} · 1{Yt+h ≤ q}

pj(Zt, ψ)

]
.

Lemma 1 establishes the identification of the distribution functions for potential out-

comes. Given the identification of the distribution functions, the identification of quantile

functions for the potential outcomes and the QPE follow directly. This lemma serves as a

fundamental basis for estimating and comprehending the quantiles of potential outcomes,

enabling the estimation of the QPE.

2.3 Our Framework and the Direct Potential Outcome System

Our model can be considered as a reduced form of a structural model under additional

assumptions. We provide a structural model that is a special case using the direct potential

outcome system from Rambachan and Shephard (2021) so that our QPE can have a causal

interpretation. We also provide sufficient conditions for the identification result in the

structural model.

Recall that Zt are the covariates at time t that could include lagged outcome variables

and lagged policy variables. We further let Zt = (Z ′
y,t, Z

′
e,t)

′ in which Zy,t is a vector of
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lagged outcome variables and Ze,t is a vector of exogenous variables. {Ze,t}∞t=1 is assumed

to be causally unaffected by the assignment process {Dt}∞t=1, called a background process

in Rambachan and Shephard (2021). Let the outcome variable and the policy variable be

generated as the following:

Yt = Y (Dt, Zt, ut), Dt = D(Zt, ψ, εt), (2)

where ut and εt denote unobserved variables. The potential outcome variable is then given

as Yt(d) = Y (d, Zt, ut). We note that given that Yt = Y (Dt, Zt, ut), it is straightforward

to see that Yt depends on contemporaneous assignment and does not depend on future

assignments. It is possible that Yt depends on past assignments implicitly. For example,

suppose that Zt = Zy,t = Yt−1, then it follows that

Yt = Y (Dt, Yt−1, ut) = Y (Dt, Y (Dt−1, Yt−2, ut−1), ut)

= Y (Dt, Y (Dt−1, Y (Dt−2, Yt−3, ut−2), ut−1), ut) = . . . .

Through forward iteration, we can see that Yt would depend on Ds for all 1 ≤ s ≤ t.

Similar to Example 3 in Rambachan and Shephard (2021), we have that (D1, . . . , Dt) only

impacts Yt through Dt directly and through (Y1, . . . , Yt−1) indirectly. In sum, when Zt

includes a lagged outcome variable, Yt will depend on contemporaneous assignments and

past assignments. Under such a structural framework, we can see that our model can be

expressed as a direct potential outcome system. Note that according to Rambachan and

Shephard (2021), Y ψ
t,h(d) is the time-(t + h) potential outcome at the assignment process

(D1, . . . , Dt−1, d,Dt+1, . . . , Dt+h).

In the following, we impose conditions on the structural model such that Assumption

1, which is the unconfoundedness assumption, will hold. Then, it follows that QPE can be

identified.

Assumption 3 (Structural Model) Assume that

1. Yt and Dt are generated according to (2);

2. {εt}∞t=1 and {ut}∞t=1 are sequences of i.i.d. random variables;
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3. {εt}∞t=1, {ut}∞t=1 and {Z ′
e,t}∞t=1 are jointly independent.

Lemma 2 If Assumption 3 holds, Assumption 1 holds.

2.4 Estimation

Following the identification result in Lemma 1, the estimation of F h
j (q, ψ) can be conducted

using a two-step procedure. Following the methodology of Angrist and Kuersteiner (2011)

and Angrist, Jordà, and Kuersteiner (2018), to accurately estimate F h
j (q, ψ), in the first

step, we estimate the policy regime, denoted as ψ̂, and the policy propensity score, denoted

pj(Zt, ψ) using a parametric model, such as the logit, probit, multinomial logit, or multino-

mial probit model. As highlighted in Angrist, Jordà, and Kuersteiner (2018), this approach

does not define or estimate structural innovations for the policy process. More specifically,

in the empirical section of this paper, pj(Zt, ψ̂) represents the parametric estimate of the

policy propensity score. In the second step, the estimation of F h
j (q, ψ) is accomplished us-

ing inverse probability weighting, utilizing the estimated policy propensity score obtained

in the first step. The estimation is given by:

F̂ h
j (q, ψ̂) =

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q}
pj(Zt, ψ̂)

/ T∑
t=1

1{Dt = dj}
pj(Zt, ψ̂)

,

where the weights on each observation are normalized such that the sum of weights is equal

to 1, following the approach in Imbens (2004) and Donald and Hsu (2014).

The estimator of the quantile function Qh
j (τ, ψ) for τ ∈ (0, 1) is defined as:

Q̂h
j (τ, ψ̂) = inf{q : F̂ h

j (q, ψ̂) ≥ τ},

where F̂ h
j (q, ψ̂) represents the estimated distribution function. Consequently, the estimator

for QPE denoted as ∆h
j (τ, ψ) is given by:

∆̂h
j (τ, ψ̂) = Q̂h

j (τ, ψ̂)− Q̂h
0(τ, ψ̂),

where Q̂h
0(τ, ψ̂) is the estimator of the quantile function for the control group at the same

quantile level, τ .
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2.5 Asymptotic Properties

Before delving into the asymptotic properties of the QPE estimators, we impose additional

regularity conditions in addition to the unconfoundedness assumption.

Assumption 4 (Weak dependence of the data) The stationary sequence χt is β-mixing

with βi = O(i−q) and q > p/(p− 2) for some 2 < p <∞.

Assumption 5 Assume that the parameter ψ ∈ Ψ where Ψ ⊂ Rkψ is a compact set and

the number of covariates kψ <∞.

Assumption 6 (Parametric Propensity Scores) Assume that for all j ∈ {0, · · · , J},

1. E[1{Dt = dj}|Zt] = pjt(Zt, ψ0), and for all ψ ̸= ψ0, E[1{Dt = dj}|Zt] ̸= pj(Zt, ψ);

2. for all Zt, pj(Zt, ψ) is differentiable with respect to ψ for ψ ∈ Nδ(ψ0) ≡ {ψ ∈

Ψ|∥ψ − ψ0∥ ≤ δ} and some δ > 0;

3. let gj(Zt, ψ) = 1/pj(Zt, ψ). E[supψ∈Nδ(ψ0) |g
j(Zt, ψ0)|ε] ≤M , E[supψ∈Nδ(ψ0) ∥∂g

j(Zt, ψ0)/∂ψ∥ε] ≤

M and E[supψ∈Nδ(ψ0) ∥∂
2gj(Zt, ψ)/∂ψ∂ψ

′∥ε] ≤ M with M < ∞ and for some 2 <

ε <∞.

Assumption 7 (Asymptotic properties of ψ̂)
√
T (ψ̂−ψ0) = T−1/2

∑T
t=1 ℓ(Dt, Zt, ψ0)+op(1)

with E[∥ℓ(Dt, Zt, ψ0)∥p] <∞, where p is the same as in Assumption 4.

Assumption 8 For all h ≥ 0 and j ∈ {0, · · · , J},

1. Y ψ
t,h(dj) has convex and compact supports [qlj, q

u
j ];

2. F h
j (q, ψ) is a continuous function on [qlj, q

u
j ].

Assumption 4 is derived from Theorem 2.5 of Radulović (2002) and serves as a founda-

tion for applying the empirical process result by Arcones and Yu (1994) and the blockwise

bootstrap result by Radulović (2002). Assumptions 5, 6, and 7 share similarities with Con-

ditions 3, 4, and 6, respectively, in Angrist, Jordà, and Kuersteiner (2018). Assumption

7 assumes the existence of an estimator for ψ0 that is asymptotically normal and has an
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influence function representation. This assumption is not overly restrictive because, under

appropriate low-level conditions, a maximum likelihood estimator for ψ0 would satisfy As-

sumption 7. Assumption 8 is similar to Assumption 3.1 in Donald and Hsu (2014). The

following theorem establishes the limiting distribution of F̂ h
j (q, ψ̂).

Theorem 1 (Asymptotic properties of F̂ h
j (q, ψ̂)) Suppose that Assumptions 1–8 hold. Then,

√
T (F̂ h

· (·, ψ̂)− F h
· (·, ψ0)) ⇒ F(·, ·),

where ⇒ denotes weak convergence, and F(·, ·) is a mean-zero Gaussian process with

covariance functions,

ΩF((dj1, q1), (dj2, q2)) = lim
T→∞

T−1E

[(
T∑
t=1

wt,dj1(q1, ψ0)

)(
T∑
t=1

wt,dj2(q2, ψ0)

)′]
,

where

wt,dj(q, ψ0) =
(
1{Yt+h ≤ q} − F h

j (q, ψ0)
)
1{Dt = dj} · gj(Zt, ψ0)

+ E
[(
1{Yt+h ≤ q} − F h

j (q, ψ0)
)
1{Dt = dj} ·

∂gj(Zt, ψ0)

∂ψ′

]
ℓ(Dt, Zt, ψ0),

and gj(Zt, ψ0) = 1/pj(Zt, ψ0).

Theorem 1 establishes the weak convergence of the distribution function estimator

F̂ h
j (q, ψ̂). This theorem resembles Theorem 3.6 in Donald and Hsu (2014), with the key

distinction being that we account for weakly dependent data. To establish the asymptotic

properties of the quantile process, we impose conditions on the density functions of the

potential outcomes. Let fψh (q, dj) represent the density functions corresponding to the po-

tential outcomes Y ψ
t,h(dj), for all {j = 0, · · · , J}. These density functions play a crucial role

in analyzing the behavior of the quantile process and its asymptotic properties.

Assumption 9 For all h ≥ 0 and j ∈ {0, · · · , J}, fψh (q, d) is continuous and bounded

away from 0 on [qlj, q
u
j ].

Assumption 9 bears similarity to Assumption 3.7 in Donald and Hsu (2014) and ensures

that F h
j (q, ψ0) is strictly increasing on the interval [qlj, quj ], thereby ensures that the quantile
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function Qh
j (τ, ψ0) is well-defined over the range (0, 1). To estimate the complete quantile

functions at the parametric rate, it is necessary for the density function fψh (q, d) to be

bounded away from 0 on its support. Consequently, this assumption excludes scenarios

with unbounded support.3 The subsequent theorems provide a summary of the limiting

behaviors of Q̂h
j (τ, ψ̂) and ∆̂h

j (τ, ψ̂).

Theorem 2 (Asymptotic properties of Q̂h
j (τ, ψ̂)) Suppose that Assumptions 1–9 hold. Then,

√
T (Q̂h

· (·, ψ̂)−Qh
· (·, ψ0)) ⇒ Q(·, ·),

where Q(·, ·) is a mean-zero Gaussian process with covariance functions,

ΩQ((dj1, τ1), (dj2, τ2)) = lim
T→∞

T−1E

[(
T∑
t=1

wQt,dj1
(τ1, ψ0)

)(
T∑
t=1

wQt,dj2
(τ2, ψ0)

)′]
,

where

wQt,dj(τ, ψ0) = −
wt,dj(Q

h
j (τ, ψ0), ψ0)

fψh (Q
h
j (τ, ψ0), dj)

,

with wt,dj(·, ψ) defined in Theorem 1.

Theorem 2 is derived by applying the functional delta method to the distribution es-

timators. This method allows us to establish the asymptotic properties of the estimators.

The subsequent theorem presents the asymptotic properties of the QPE estimators, shed-

ding light on their behavior in large samples.

Theorem 3 (Asymptotic properties of ∆̂h
· (·, ψ̂)) Suppose that Assumptions 1–9 hold. Then,

√
T (∆̂h

· (·, ψ̂)−∆h
· (·, ψ0)) ⇒ R(·, ·),

where R(·, ·) is a mean-zero Gaussian process with covariance functions,

ΩR
j ((dj1, τ1), (dj2, τ2)) = lim

T→∞
T−1E

[(
T∑
t=1

w∆
t,dj1

(τ1;ψ0)

)(
T∑
t=1

w∆
t,dj2

(τ2;ψ0)

)′]
,

where

w∆
t,dj

(τ ;ψ0) = −

[
wt,dj(Q

h
j (τ, ψ0), ψ0)

fψh (Q
h
j (τ, ψ0), dj)

− wt,d0(Q
h
0(τ, ψ0), ψ0)

fψh (Q
h
0(τ, ψ0), d0)

]
,

with wt,dj(·, ψ) defined in Theorem 1.
3However, even in cases with unbounded support, it is still possible to estimate the quantile function

Qhj (τ, ψ0) for t ∈ [ϵ, 1− ϵ] for any 0 < ϵ < 1/2, where the density function fψh (q, d) remains bounded away

from 0.
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2.6 Blockwise Bootstrap

The covariance function becomes intricate with weakly dependent data, making it chal-

lenging to obtain reliable inferences. To address this, we propose a blockwise bootstrap

method that enables inference in such settings. Specifically, we consider a block length

of L and a sample size of T . We have a total of T − L + 1 overlapping blocks, with

the j-th block denoted as {(Yt+h, Yt, Zt, Dt)}j+Lt=j for j = 1, · · · , T − L + 1. Let N be the

smallest natural number such that N · L ≥ T . To perform the blockwise bootstrap, we

randomly select N blocks with replacement from the set of T − L + 1 available blocks

and lay them end-to-end in the order sampled.4 We denote the bootstrapped sample as

{(Y b
t+h, Y

b
t , Z

b
t , D

b
t )}Tt=1, where b = 1, · · · , B and B represents the number of replications.

First, we compute ψ̂b based on the bootstrapped sample. Using this estimated parameter,

we calculate the bootstrapped distribution function as follows:

F̂ h,b
j (q, ψ̂b) =

T∑
t=1

1{Db
t = dj} · 1{Y b

t+h ≤ q}
pj(Zb

t , ψ̂
b)

/ T∑
t=1

1{Db
t = dj}

pj(Zb
t , ψ̂

b)
.

Second, we compute the bootstrapped quantile functions as Q̂h,b
j (τ, ψ̂b) = inf{q : F̂ h,b

j (q, ψ̂b) ≥

τ} and obtain the bootstrapped QPE as ∆̂h
j (τ, ψ̂

b) = Q̂h,b
j (τ, ψ̂b)− Q̂h,b

0 (τ, ψ̂b). By making

additional assumptions, we can study the asymptotic behavior of the bootstrap estimators.

Assumption 10 (Asymptotic properties of ψ̂b) Assume that
√
T (ψ̂b−ψ0) = T−1/2

∑T
t=1 ℓ(D

b
t , Z

b
t , ψ0)+

op(1).

Assumption 11 (Block size) Assume that L = C ·T ρ with 0 < ρ < (p−2)/(2p−2)) where

p is the same as in Assumption 4.

Assumption 10 specifies the asymptotic properties of the bootstrapped policy regime

estimator ψ̂b. This ensures desirable properties of the estimator in the asymptotic limit.

Alternatively, Assumption 11, derived from Radulović (2002), imposes conditions on the

block size used in the blockwise bootstrap. These conditions are necessary to ensure the

validity of the blockwise bootstrap method and its compatibility with the underlying data

structure.
4We must exclude the last NL−T observations from the last sampled block to ensure that the bootstrap

sample size remains equal to T .
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Theorem 4 Suppose that Assumptions 1–11 hold. Then, conditional on the sample path

with probability approaching one,

√
T (F̂ h,b

· (·, ψ̂b)− F̂ h
· (·, ψ̂)) ⇒ F(·, ·),

√
T (Q̂h,b

· (·, ψ̂b)− Q̂h
· (·, ψ̂)) ⇒ Q(·, ·),

√
T (∆̂h,b

· (·, ψ̂b)− ∆̂h
· (·, ψ̂)) ⇒ R(·, ·),

where F(·, ·), Q(·, ·), and R(·, ·) are given in Theorems 1–3.

Theorem 4 establishes the validity of the proposed blockwise bootstrap, which has been

shown by Radulović (2002), and enables the construction of valid pointwise confidence

intervals for QPE. The validity result in Theorem 4 can also be extended to the estimation

of monetary policy effects as demonstrated in Angrist, Jordà, and Kuersteiner (2018). It is

worth noting that the results presented in Theorems 1 to 4 hold uniformly over the indexes.

Consequently, similar to the approach taken by Donald and Hsu (2014), these results

can be utilized for constructing tests for the stochastic dominance relations between the

distributions of the potential outcomes, tests for the Lorenz dominance relations between

the potential outcomes, and a confidence band for QPE over a continuum of quantile

indexes. We provide a detailed description of the step-by-step implementation procedures

for constructing both pointwise confidence intervals and confidence bands for QPE in the

supplement appendix.

3 The Effectiveness of US Macroprudential Policy

3.1 Data and Policy Propensity Score Specification

This analysis incorporates data relating to US macroprudential policy. A macroprudential

tool is viewed as an instrument that can influence credit growth by inducing acceleration or

deceleration. The data sources include the works of Elliott, Feldberg, and Lehnert (2013)

for the period 1948–1993, Shim et al. (2013) for the period 1990–2012, and the Interna-

tional Monetary Fund’s Integrated Macroprudential Policy (iMaPP) database compiled by
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Alam et al. (2019) for the period 2013–2019. Elliott, Feldberg, and Lehnert (2013) thor-

oughly examine diverse macroprudential tools, represented as an ordered policy variable

with values extending beyond –1 and 1 given the actions of tools considered. In contrast,

Shim et al. (2013) and the iMaPP database frame macroprudential policy within the scope

of an ordered policy variable ranging from –1 to 1. Our classification of these tools follows

this latter approach, as depicted in Table 1. To elaborate further, we set the monthly policy

variable Dt to 1 (−1) if there is one tightening (easing) tool adopted in a month and to 0

if no tightening or easing tool is adopted during time t. For cases where multiple macro-

prudential tools are employed during period t, the monthly policy variable Dt is defined

as 1 (or 0, or −1) if the number of tightening tools surpasses (equals, or is less than) the

number of easing tools. In such cases, when the policy variable Dt is equal to 1 (or 0, or

−1), it signifies a tightening (unchanging, or easing) macroprudential policy at time t.5

Figure 1 presents the monthly macroprudential actions from February 1948 to Decem-

ber 2019. Within this period, 50 months saw tightening actions implemented, whereas

easing actions were adopted in 90 months, and the remaining months observed no policy

adjustments. The shaded gray areas in Figure 1 denote recession periods as defined by the

NBER. Notably, the frequency of easing actions exceeded that of tightening actions, with

26 months introducing easing measures and 5 months adopting tightening actions during

recessions. After 1984, the US diminished its utilization of macroprudential policies. Only

three easing macroprudential policies were launched between 1985 and 2007, specifically

in 1986 (April), 1990 (December), and 1992 (April). As per the data from Shim et al.

(2013), easing measures related to housing markets were enacted in the US in 2008 (July),

2009 (February), and 2009 (November), and a tightening measure was introduced in 2010

(September). Starting from 2014, as recorded by the iMaPP database, tightening measures

were initiated every January until 2018, with an additional action in October 2018.

We focus on real bank credit growth responses to macroprudential actions in all commer-

cial banks. Bank credit for all commercial banks has two major components: (1) securities
5Our definition of the policy variable Dt aligns with methodologies used in earlier works by Forbes,

Fratzscher, and Straub (2015) and Richter, Schularick, and Shim (2019).

17



and (2) loans and leases. The outcome variable is defined as:

Yt+h = ln(yt+h)− ln(yt−1),

where y is bank credit deflated by the consumer price index (CPI), and Yt+h denotes the

change in the log of real bank credit between the base month t − 1 and month t + h over

varying prediction horizons h = 0, 1, 2, · · · , H. We set H = 24 in this paper. By performing

QPE at specific quantiles or the entire distribution of outcomes, we can assess the effects

of policy at any point within its distribution.

We utilize an ordered probit model to determine the policy propensity score (pj(Zt, ψ))

for macroprudential actions, using a selection of covariates (Zt). We select variables such

as the inflation rate and industrial production growth rate based on macroeconomic theory,

which states that these factors are integral to policy decisions and credit growth (Elliott,

Feldberg, and Lehnert, 2013; Jordà, Schularick and Taylor, 2013). Acknowledging the po-

tential impact of credit policy on financial market stabilization, we expand our propensity

score model to include variables like the growth rate of the real house price index, the

cyclically adjusted price–earnings (CAPE) ratio, the 3-month Treasury bill rate, and the

yield curve spread. These additional variables are drawn from Elliott, Feldberg, and Lehn-

ert (2013); Shiller (2016); and Jordà, Schularick, and Taylor (2013), and Monnet (2014).

Our choice of conditioning variables reflects the unique characteristics of the US macroe-

conomic policy context and the specifics of our dataset. Considering the coordination

between macroprudential and monetary policy in the US, we also include variables linked

to monetary policy, like reserves and monetary base growth rates. This selection ensures

we cover the primary factors influencing both policy decisions and bank credit growth,

thereby safeguarding the validity of the unconfoundedness assumption in our study.6

6We extract data from reliable sources. Variables such as bank credit, the industrial production index,

the consumer price index, reserve money, the 3-month Treasury bills interest rate, and the 10-year govern-

ment bond yields are from FRED. S&P 500 stock prices, CAPE, and the real home price index are from

Shiller (2016). All these variables, except interest variables and the yield curve spread, are taken from

their official, seasonally adjusted values and converted into annual growth rates. To account for inflation,

we transform bank credit, equity price index, and monetary aggregates into real values by dividing them

by CPI.
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Table 2 reports the average marginal effects of the policy predictors on the likelihood of a

tightening action. We incorporate three lags for both the tightening and easing actions. The

chosen lag length is determined using Akaike’s Information Criterion (AIC). Other variables

considered in estimating the policy propensity score are lagged for one period. In column (1)

of Table 2, rises in the inflation rate, real bank credit, and the industrial production index

increase the likelihood of tightening actions. This confirms the countercyclical purpose of

macroprudential policy. However, only the growth rate of the industrial production index

has a significant effect. In column (2) we further control variables relative to the equity

market and interest rate. The result indicates that upsurges in both CAPE and the real

home price index contribute to positive marginal effects on the probability of tightening

actions, with CAPE exhibiting a notably more significant impact. Increasing the 3-month

Treasury bill rate and yield curve spread also increases the likelihood of a tightening action,

but only the yield curve spread coefficient is significant.

In columns (3) and (4) of Table 2, we examine the impact of including variables related

to monetary policy. In column (4), the log-likelihood value indicates an improved fit when

the monetary base variable is included. As a result, we consider the variables included in

column (4) as the benchmark model for constructing the propensity score. However, when

we compare the AIC values across all four propensity score models, we find that the model

in column (2) has the smallest AIC value. This indicates that the model in column (2)

performs better in terms of model fit and complexity. One explanation for this discrepancy

is the high volatility of reserves and monetary bases, particularly during the most recent

financial crisis. As a robustness check for our empirical results, we also consider the model

that includes the variables from column (2). This additional analysis is presented in Section

3.3, where we assess the robustness of our findings.

Regarding the testability of the unconfoundedness assumption, we acknowledge that al-

though it is considered untestable, Angrist and Kuersteiner (2011) and Angrist, Jordà, and

Kuersteiner (2018) have proposed methods that allow for testing this assumption under

certain conditions in time series settings. However, these methods require simultaneous

testing for the martingale difference sequences property of a continuum of processes in-
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dexed in a function space, which is challenging in practice. In response to these difficulties,

we have employed a sensitivity analysis, as detailed in the supplementary appendix under

the section titled “Sensitivity Analysis of the Unconfoundedness Assumption,” considering

potential omitted variables. This analysis illuminates the robustness of our findings and

helps address concerns about the operational complexities and stringent prerequisites of

these tests, which demand high computational resources and are thus less feasible in our

empirical study. Sensitivity analysis serves as a more practical tool in this context be-

cause it evaluates the impact of unmeasured confounding variables without enforcing strict

assumptions, thereby generating plausible estimates across various confounding scenarios.

This approach enhances the reliability and robustness of our results, proving effective in

managing the challenges of unconfoundedness.

3.2 Benchmark Empirical Results

The main goal of macroprudential policy, as discussed earlier, is to regulate fluctuations

in the financial market. The macroprudential authorities implement tightening actions to

control excessive credit growth whereas easing actions aim to stimulate conditions when

credit is low. Our analysis employs QPE and US data to evaluate the impacts of these

macroprudential policies, providing an advantageous look into effects across the distribution

of real bank credit growth. For the computation of confidence intervals for the empirical

distribution of QPE, we use the blockwise bootstrap method, repeating the procedure 2,000

times. The sensitivity of results to block length selection is acknowledged, leading us to

choose an optimal length in line with the Hall, Horowitz, and Jing (1995) and Horowitz

(2019) methodology, where L = C · T ρ with ρ = 1/5 and C = 1. Table 3 presents the

estimated effects of both tightening and easing actions across various quantiles (0.1-th,

0.3-th, 0.5-th, 0.7-th, 0.9-th) of real bank credit growth. The table’s upper panel displays

tightening action results, whereas the lower panel covers easing actions. For comparative

purposes, we also present the average policy effect estimation results by Angrist, Jordà, and

Kuersteiner (2018), thereby assessing the impact of macroprudential policies. All estimates

are presented with bootstrapped 95% confidence intervals indicated in square brackets.
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The average policy effect results from Table 3 reveal that macroprudential policies

significantly negatively impact real bank credit growth for tightening actions. These effects

persist for 3 to 9 months after implementing macroprudential actions, indicating their

potential effectiveness in controlling average credit growth. However, whereas the average

responses suggest effectiveness, it does not necessarily imply overall effectiveness in terms of

credit growth. Further analysis of bank credit growth responses at different quantiles reveals

heterogeneity in the results. Specifically, the QPE estimates are significantly negative only

for the 0.1-th quantile at months 3, 6, and 9. For other quantiles and periods beyond 12

months, most QPE estimates are statistically insignificant. These results suggest that the

effectiveness of tightening actions in reducing the risk of high bank credit growth diminishes

after 12 months. In addition, the QPE estimates demonstrate an increasing trend along the

quantiles. For instance, three months post-tightening actions, QPE estimates range from

–1.924 (0.1-th quantile) to 0.009 (0.9-th quantile). A year later, they range from –3.047 to

0.386, indicating an increase in the estimated effects along with quantiles. Furthermore, the

QPE estimates at the 0.9-th quantile become positive after a year of actions, representing

tightening actions increase bank credit when credit growth is exceptionally high.

In the lower panel of Table 3, the average effects of easing actions on bank credit

growth are insignificant. However, upon examining the QPE responses of easing actions

at different quantiles, we find heterogeneity in the results, with the effects transitioning

from negative to positive as we move along the quantiles. Specifically, the QPE estimates

are positive at the middle and high quantiles of bank credit growth, but most of these

estimates are statistically insignificant. In contrast, the effects are negative at the lower

tail of credit growth, where easing actions are expected to have a significant impact. For

instance, at the 0.1-th quantile, all QPE estimates are negative. These estimates become

statistically significant 18 months after implementing the easing actions, indicating that

adopting easing policies adversely affects bank credit growth when it is notably low. These

findings highlight the dependence of policy effectiveness on the quantiles of credit growth.

It is crucial to consider more than just the average impact of policies to determine their

effectiveness in reducing the risk of excessive credit growth.
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As discussed, macroprudential policy aims to minimize fluctuations in the financial

market. Tightening actions are then implemented by the authorities to address excessive

credit growth whereas easing actions aim to stimulate low credit conditions. We present the

QPE results for these actions across various bank credit growth quantiles in Table 4. From

the upper panel of Table 4, we observe that the QPE estimates for tightening actions are

initially negative at high quantiles for up to 9 months after implementation. However, after

one year, the QPE estimates turn positive for quantiles higher than 0.80. Notably, at the

0.95-th quantile of bank credit growth, the responses to tightening actions are significantly

positive, with a QPE estimate of 4.436 observed two years after the actions. These results

suggest that adopting tightening actions further increases high credit growth and introduces

additional risks to the financial market one year after implementing the policy. Turning

to the lower panel of Table 4, we find that nearly all QPE estimates for easing actions at

low quantiles of bank credit growth are negative across all time horizons, which indicates

that easing actions have adverse effects on low quantiles of credit growth. For instance,

at the 0.05-th quantile of credit growth, the QPE estimate is significantly negative, with

estimates of –2.309 two years after implementing the actions. These results imply that a

stimulation policy has an immediate reverse effect when the financial market experiences

extremely low credit growth. Overall, our findings highlight the adverse impact of easing

actions on the financial markets, particularly regarding stimulating effects on credit growth.

These findings underscore the importance of considering the impacts at different quantiles

in understanding the efficacy of macroprudential policies.

To illustrate the asymmetric effects of macroprudential policy on credit growth, which

depend on the quantiles of credit growth, we present the impulse response functions based

on both average policy effects and QPE in Figures 2 and 3. In the upper panel of Figure 2,

we observe that the average policy effects of tightening actions are negative and effective

up to 12 months after implementation. However, the three lower panels of Figure 2, rep-

resenting the 0.85-th, 0.90-th, and 0.95-th quantiles, reveal a different pattern. Initially,

the effects are around zero and gradually turn positive approximately nine months after

implementation. Furthermore, these effects continue to increase over time. These results
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suggest tightening actions may inadvertently expand credit when bank credit growth is ex-

ceptionally high. Conversely, Figure 3 demonstrates that whereas the average policy effects

are positive 3 to 6 months after implementing easing actions, they transition to negative

over time and consistently deepen. The QPE at lower quantiles remain negative across the

entire horizon, implying that easing actions could reduce bank credit when credit growth

is low. These findings underscore the importance of considering both average and quantile

effects to understand better the differential impact of macroprudential policy under diverse

financial conditions.

3.3 Robustness Checks

In this section, we conduct robust checks to ensure the reliability of our proposed method.

We begin by examining the impact on two elements of bank credit: securities and bank

loans and leases. Our analysis at specific intervals, spanning 0, 6, 12, 18, and 24 months,

is in Tables 5 and 6. The top sections of Tables 5 and 6 show that tightening actions

reduce low quantiles of real securities and loans and leases but increase high quantiles.

Furthermore, the lower sections of both tables indicate that the QPE estimates of easing

actions for low quantiles of real securities are negative, with positive estimates for high

quantiles. The results suggest that tightening actions may not limit high securities growth

whereas easing policies struggle to stimulate financial markets when securities growth is

low. The findings presented in Tables 5 and 6 align closely with those in Tables 3, further

emphasizing the robustness of our methodology in evaluating US macroprudential policy.

However, it is worth noting that the average policy effect estimates of tightening actions

for real securities are all negative, whereas they are all positive for real loans and leases.

The results suggest that the results of tightening actions based on the average policy effects

method are less robust.

Next, although most previous studies use real bank credit as the outcome variable of

interest, nominal bank credit growth usually varies during high inflation periods, confound-

ing the policy effect. To demonstrate the robustness of the empirical results, we alter our

focus to the change in nominal bank credit growth as in Cizel et al. (2019). Table 7
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presents the estimated effects of macroprudential policy on credit growth. Interestingly,

tightening actions initially negatively impact average nominal credit growth, but after one

year, it becomes positive. Conversely, easing actions have an immediate positive average

policy effect that turns negative after one year. Analyzing the QPE estimates, we find that

tightening actions mostly yield negative effects for low quantiles but positive effects for

the 0.9-th quantile. The responses of easing actions on nominal credit growth mirror those

observed for real credit growth. Notably, based on the empirical results from Table 7, it

is evident that easing actions struggle to stimulate low nominal bank credit growth in the

financial market. Our findings, presented in Tables 5 to 7, reinforce the suitability of the

proposed QPE methodology for evaluating macroprudential policy effects.

We expand our analysis by incorporating additional lags of the covariates within the

propensity score model. The benchmark model is limited to considering only a single lag

of related macroeconomic variables. This restriction may not sufficiently encapsulate the

full spectrum of information that policymakers potentially evaluate when deciding upon

policy measures. To test the robustness, we incorporate two to three lags of the covariates

within our propensity-score models. The contrast between impulse response functions under

various lag conditions is demonstrated in Figure 4. The solid black lines in this figure depict

the estimated QPE of the benchmark model. The gray dashed lines represent the estimated

QPE when two lags are included in the propensity score model. The gray dotted lines chart

the estimated QPE when three lags are incorporated. The QPE estimates resulting from

policy easing actions across all three quartiles and those resulting from tightening actions

at the third quartile exhibit a close correlation and similar trend. The remaining estimates

do not present any significant divergence from the baseline model. When three lags are

introduced, we note minor adjustments in the QPE estimates for tightening actions at

the first and second quartiles. However, these shifts remain marginal. In conclusion, our

analysis confirms the robustness of the QPE when integrating additional covariate lags into

the propensity score model.

Furthermore, we enhance the stability and credibility of our results using a specific

propensity score model (see column (2) in Table 2) chosen for robustness. This model
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exhibits the lowest AIC value, striking a favorable balance between complexity and fit.

This model differs from our primary model in one key respect: it does not include the

variables related to the monetary base and reserves. Although these factors are important

for both the outcome and policy variables, they were highly volatile during the 2007–2009

financial crisis, which may make them less suitable for our model. Table 8 provides the

results of this model. Despite excluding certain variables in the propensity score model,

the observed effects of both easing and tightening actions on bank credit growth remain

the same. This suggests that our benchmark findings are not heavily dependent on these

excluded variables, reinforcing their validity.

While in most months, only a single policy was implemented, there were instances

where the authority simultaneously executed multiple macroprudential actions. For our

benchmark empirical study, we aggregated multiple macroprudential actions into a scale

of –1, 0, 1. Condensing multiple actions into a –1 to 1 scale may result in some loss of

information, and the QPE estimates may encompass the impacts of multiple policies. To

address this concern, we follow the approach used by Angrist, Jordà, and Kuersteiner (2018)

by allowing the policy variable to adopt five categories, represented as −2,−1, 0, 1, 2. The

±2 categories reflect the enactment of more than two policies, either tightening or easing.

We compute the policy propensity score using an ordered probit model considering all

five changes and report causal effects for the most prevalent categories of the ±1 changes.

Table 9 shows that a tightening macroprudential policy leads to decreased bank credit on

average and low quantiles but increased bank credit in high quantiles. Conversely, an easing

macroprudential policy increases bank credit on average and high quantiles but decreases

bank credit in low quantiles. These results, obtained using five categories, are like the

benchmark results obtained with three categories.

Finally, given the limited macroprudential actions observed from 1983 until the financial

crisis, our analysis focuses on a subsample from 1948 to 1983. Figure 1 supports this choice,

which depicts a decline in the utilization of macroprudential actions during the later period.

By concentrating on the earlier period, we can assess the effectiveness of macroprudential

policy without the potential distortion caused by the reduced frequency of actions. Table 10
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presents the estimated effects, and despite excluding the 1984–2017 sample, the difference

between the longer extended period (1948–2017) and the early period (1948–1983) is not

substantial. This approach provides insights into the effects of macroprudential policy

during a more active period, further bolstering the reliability of our analysis.

4 Conclusion and Discussion

In this paper, we propose a novel application of QPE to assess the impact of macropru-

dential policies on bank credit growth. Building upon the theoretical groundwork laid by

Angrist, Jordà, and Kuersteiner (2018), we extend their analysis of the average policy ef-

fect to QPE and adapt the cross-sectional frameworks developed by Firpo (2007), Cattaneo

(2010), and Donald and Hsu (2014) to a time series context. Our empirical investigation

of US macroprudential policy shows that tightening such policies does not effectively sup-

press high credit growth. Conversely, easing policies during periods of low credit growth

do not stimulate bank credit growth significantly. Consequently, our findings challenge the

efficacy of these macroprudential policies in mitigating high-risk bank credit growth and

achieving financial stability in the US context.

However, we must acknowledge the limitations inherent to our study. Our reliance on

aggregate time series data inhibits our ability to examine the diverse responses of individual

banks to macroprudential policies. Although our findings suggest a limited influence of

these policies on bank credit growth at higher quantiles, it does not unequivocally establish

the ineffectiveness of such policies. Indeed, these policies might offer additional advantages

or manifest varied effects at the individual bank level, aspects beyond the purview of our

current study. Given the intricate nature of these dynamics, future research focused on

quantile causal effects using bank-specific panel data could shed more light on the nuances

of macroprudential policy impact. Developing this approach is a promising avenue for

deeper insights in the field.
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Table 1: Types of Macroprudential Tools

Policy instrument Tightening tools Easing tools
Tools affecting demand for credit
Underwriting standards Lowering loan maturity limits, Increasing loan maturity limits,

loan-to-value limits or loan-to-value limits or
debt-to-income ratio limits debt-to-income ratio limits

Margin requirements Setting minimum investment levels
to limit the investor’s leverage

Tax-related policies Increasing the amount of tax credit
for homebuyers

Tools affecting supply of credit
Interest rate ceilings Lowering the deposit rate ceilings Raising the deposit rate ceilings
Reserve requirements Raising reserve requirements Lowering reserve requirements
Liquidity requirements Raising minimum requirements for Lowering minimum requirements for

liquidity coverage ratios liquidity coverage ratios
Capital requirements Tightening capital standards Easing capital standards
Portfolio restrictions Tightened the restrictions on the types Eased the restrictions on the types of

of loans banks could hold in a portfolio loans banks could hold in a portfolio
SIFI Tightening capital standards of globally

and domestically significant financial
institutions (SIFIs)

Supervisory pressure Discouraging excessive credit growth Promoting credit availability
Source: Elliott, Feldberg, and Lehnert (2013), Shim et al. (2013), and Alam et al. (2019).
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Figure 1: Macroprudential Actions in the US
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Table 2: Ordered Probit Specification for Macroprudential Policy
Variable (1) (2) (3) (4)
Easing actions t−1 -2.091∗∗ -1.013 -1.011 -1.027

(0.992) (0.984) (0.986) (0.985)
Easing actions t−2 -0.870 0.100 0.101 0.086

(1.004) (0.993) (0.994) (0.994)
Easing actions t−3 0.853 1.804∗ 1.805∗ 1.791∗

(0.988) (0.980) (0.981) (0.980)
Tightening actions t−1 -1.064 -0.599 -0.599 -0.598

(1.188) (1.145) (1.145) (1.144)
Tightening actions t−2 2.866∗∗ 3.385∗∗∗ 3.384∗∗∗ 3.384∗∗∗

(1.187) (1.185) (1.185) (1.184)
Tightening actions t−3 0.461 0.854 0.853 0.851

(1.039) (1.000) (1.000) (1.000)
Growth of real bank credit t−1 0.276 0.373∗∗ 0.372∗∗ 0.374∗∗

(0.168) (0.177) (0.179) (0.177)
Growth of industrial production t−1 0.274∗∗ 0.307∗∗∗ 0.308∗∗∗ 0.302∗∗∗

(0.115) (0.115) (0.116) (0.116)
Ind. pro. growth × credit growth t−1 -0.044∗∗ -0.040∗∗ -0.040∗∗ -0.040∗∗

(0.021) (0.020) (0.020) (0.020)
CPI inflation t−1 0.130 0.732∗∗ 0.733∗∗ 0.729∗∗

(0.196) (0.286) (0.288) (0.286)
Growth of real home price index t−1 0.024 0.025 0.015

(0.12) (0.127) (0.124)
CAPE ratio t−1 0.303∗∗∗ 0.303∗∗∗ 0.303∗∗∗

(0.087) (0.087) (0.087)
3-month treasury bill rate t−1 -0.046 -0.046 -0.044

(0.252) (0.252) (0.252)
Yield curve spread t−1 2.073∗∗∗ 2.072∗∗∗ 2.104∗∗∗

(0.555) (0.557) (0.568)
Growth rate of reserves t−1 0.000

(0.006)
Growth rate of monetary base t−1 -0.012

(0.044)
Log Likelihood -450.35 -436.99 -436.99 -436.95
AIC 924.69 905.98 907.98 907.91

Notes: This table reports marginal effects on the probability of tightening actions. The reported coefficients are multiplied
by 100. Standard errors are shown in parentheses. ***,**, and * denote significance at 99%, 95%, 90% levels, respectively.

APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9
Tightening Actions

0 -0.245∗ -0.226 -0.260 -0.211 -0.104 -0.278
[-0.413, -0.076] [-0.660, 0.208] [-0.595, 0.074] [-0.572, 0.150] [-0.425, 0.218] [-0.546, -0.011]

3 -0.813∗ -1.924∗ -1.386 -0.454 -0.051 0.009
[-1.471, -0.154] [-3.478, -0.369] [-3.311, 0.538] [-1.726, 0.818] [-0.919, 0.817] [-0.681, 0.699]

6 -1.177∗ -2.268∗ -1.842 -0.639 -0.142 -0.373
[-2.130, -0.223] [-4.275, -0.261] [-4.270, 0.586] [-2.723, 1.445] [-1.409, 1.124] [-1.300, 0.553]

9 -1.415∗ -2.917∗ -2.194 -0.718 -0.642 -0.441
[-2.679, -0.151] [-5.678, -0.157] [-5.516, 1.129] [-3.135, 1.698] [-2.265, 0.980] [-1.882, 1.001]

12 -1.190 -3.047 -1.903 -0.736 -0.070 0.368
[-2.889, 0.510] [-6.436, 0.342] [-5.478, 1.671] [-3.801, 2.329] [-2.438, 2.299] [-1.517, 2.253]

15 -1.110 -1.950 -2.703 -1.837 0.397 1.697
[-3.207, 0.986] [-5.004, 1.103] [-7.181, 1.774] [-5.687, 2.013] [-2.711, 3.506] [-1.017, 4.411]

18 -1.096 -1.902 -1.977 -2.986 -0.237 2.600
[-3.594, 1.403] [-6.018, 2.213] [-5.345, 1.390] [-8.106, 2.135] [-4.179, 3.704] [-1.278, 6.477]

21 -1.177 -1.957 -3.007 -3.336 -0.943 2.087
[-4.047, 1.693] [-6.272, 2.358] [-6.729, 0.714] [-8.415, 1.742] [-5.207, 3.321] [-1.059, 5.233]

24 -0.987 -1.017 -3.051 -2.551 -1.004 1.472
[-4.280, 2.305] [-6.648, 4.614] [-7.059, 0.956] [-6.914, 1.812] [-5.934, 3.926] [-2.764, 5.707]

Easing Actions
0 0.051 -0.380 -0.010 0.118 0.173 0.337∗

[-0.106, 0.208] [-0.872, 0.112] [-0.251, 0.231] [-0.104, 0.341] [-0.071, 0.417] [0.129, 0.545]
3 0.104 -0.556 -0.246 0.049 0.671 1.081∗

[-0.323, 0.531] [-1.653, 0.541] [-0.997, 0.505] [-0.639, 0.736] [-0.063, 1.405] [0.195, 1.967]
6 0.036 -0.364 -0.078 0.388 0.979∗ 0.745∗

[-0.520, 0.593] [-1.642, 0.915] [-1.286, 1.130] [-0.827, 1.602] [0.262, 1.696] [0.054, 1.436]
9 -0.406 -0.970 -0.715 -0.025 0.677 0.529

[-1.188, 0.375] [-3.270, 1.330] [-2.036, 0.606] [-1.733, 1.683] [-0.038, 1.393] [-0.331, 1.389]
12 -0.534 -1.832 -0.879 0.358 0.533 0.102

[-1.491, 0.423] [-3.883, 0.220] [-2.586, 0.827] [-1.432, 2.149] [-0.441, 1.507] [-1.240, 1.445]
15 -0.704 -1.571 -1.252 0.427 0.567 0.393

[-1.840, 0.432] [-3.347, 0.204] [-3.344, 0.840] [-1.989, 2.843] [-0.487, 1.621] [-1.483, 2.270]
18 -0.928 -2.522∗ -2.388 0.680 0.257 0.704

[-2.263, 0.408] [-4.816, -0.229] [-5.273, 0.497] [-2.417, 3.776] [-1.366, 1.88] [-0.855, 2.263]
21 -1.228 -3.173∗ -2.809 -0.119 0.555 0.514

[-2.732, 0.276] [-6.098, -0.247] [-6.425, 0.808] [-2.782, 2.544] [-1.192, 2.302] [-0.686, 1.715]
24 -1.511 -3.994∗ -3.394 0.312 0.407 0.961

[-3.133, 0.112] [-7.135, -0.853] [-7.484, 0.697] [-2.903, 3.526] [-1.996, 2.811] [-0.897, 2.820]
Notes: APE denotes the average policy effects. The first column is months after the actions. * denotes significance at the
95% level. [ , ] are the 95% bootstrap confidence intervals for the estimator of QPE.

Table 3: Estimates of Responses of Real Bank Credit to Macroprudential Actions
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Tightening Actions
τ = 0.75 τ = 0.80 τ = 0.85 τ = 0.90 τ = 0.95

0 -0.149 -0.197 -0.190 -0.278∗ -0.331
[-0.366, 0.069] [-0.398, 0.005] [-0.428, 0.048] [-0.546, -0.011] [-0.930, 0.267]

3 -0.110 -0.007 0.077 0.009 -0.236
[-1.000, 0.780] [-0.759, 0.745] [-0.638, 0.791] [-0.681, 0.699] [-0.914, 0.442]

6 -0.234 -0.269 -0.368 -0.373 -0.225
[-1.298, 0.829] [-1.445, 0.907] [-1.525, 0.789] [-1.300, 0.553] [-1.461, 1.011]

9 -0.376 0.201 -0.058 -0.441 -0.366
[-1.638, 0.886] [-1.470, 1.871] [-1.519, 1.403] [-1.882, 1.001] [-1.676, 0.943]

12 0.017 0.723 0.887 0.368 0.460
[-2.292, 2.326] [-1.690, 3.136] [-1.441, 3.214] [-1.517, 2.253] [-1.710, 2.630]

15 -0.082 0.854 0.856 1.697 1.098
[-3.125, 2.961] [-2.762, 4.470] [-1.236, 2.947] [-1.017, 4.411] [-0.862, 3.058]

18 -0.741 0.318 0.958 2.600 2.235
[-5.104, 3.622] [-3.285, 3.921] [-1.961, 3.877] [-1.278, 6.477] [-1.005, 5.475]

21 -1.443 1.119 1.134 2.087 2.963
[-6.048, 3.161] [-2.851, 5.090] [-2.969, 5.236] [-1.059, 5.233] [-0.276, 6.202]

24 -0.785 1.011 1.704 1.472 4.436∗
[-5.141, 3.571] [-3.862, 5.883] [-2.899, 6.307] [-2.764, 5.707] [0.346, 8.526]

Easing Actions
τ = 0.05 τ = 0.10 τ = 0.15 τ = 0.20 τ = 0.25

0 -0.262 -0.380 -0.201 -0.106 -0.010
[-0.596, 0.072] [-0.872, 0.112] [-0.597, 0.195] [-0.564, 0.352] [-0.326, 0.306]

3 -0.751 -0.556 -0.090 -0.241 -0.360
[-1.728, 0.225] [-1.653, 0.541] [-1.317, 1.137] [-1.030, 0.548] [-1.235, 0.515]

6 0.015 -0.364 -0.812 -0.393 -0.312
[-1.962, 1.992] [-1.642, 0.915] [-1.946, 0.322] [-1.583, 0.797] [-1.453, 0.829]

9 -1.782 -0.97 -0.541 -0.772 -0.763
[-4.016, 0.452] [-3.270, 1.330] [-2.804, 1.721] [-2.166, 0.622] [-1.928, 0.403]

12 -0.818 -1.832 -1.581 -0.769 -1.174
[-2.699, 1.063] [-3.883, 0.220] [-3.638, 0.477] [-2.809, 1.270] [-3.054, 0.705]

15 -0.899 -1.571 -2.115 -1.898 -1.225
[-2.670, 0.872] [-3.347, 0.204] [-4.453, 0.222] [-4.012, 0.216] [-3.513, 1.063]

18 -1.059 -2.522∗ -2.113 -2.292∗ -2.277∗
[-2.680, 0.561] [-4.816, -0.229] [-4.295, 0.070] [-4.261, -0.323] [-4.016, -0.539]

21 -1.307 -3.173∗ -2.543∗ -2.531∗ -2.684∗
[-3.133, 0.519] [-6.098, -0.247] [-4.944, -0.141] [-4.826, -0.237] [-5.194, -0.174]

24 -2.309∗ -3.994∗ -2.683 -1.882 -2.799
[-4.358, -0.259] [-7.135, -0.853] [-5.634, 0.268] [-4.962, 1.199] [-5.711, 0.114]

Notes: The first column is months after the actions. * denotes significance at the 95% level. [ , ] are the 95% bootstrap
confidence intervals for the estimator of QPE.

Table 4: Tail Responses of Real Bank Credit to Macroprudential Actions

Tightening Actions
APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

0 -0.356 -0.543∗ -0.470 -0.287 -0.373 0.071
[-0.781, 0.068] [ -1.035, -0.050 ] [ -1.090, 0.150 ] [ -0.891, 0.317 ] [ -1.452, 0.706 ] [ -0.722, 0.865 ]

6 -1.695 -5.111 -2.963 -1.624 -0.266 -0.899
[-3.661, 0.271] [ -10.435, 0.212 ] [ -6.523, 0.596 ] [ -4.967, 1.719 ] [ -2.998, 2.466 ] [ -7.262, 5.463 ]

12 -2.017 -7.071∗ -4.787 -0.739 0.736 -0.209
[-4.828, 0.793] [ -14.022, -0.121 ] [ -11.412, 1.838 ] [ -5.578, 4.101 ] [-3.280, 4.751 ] [ -4.223, 3.805 ]

18 -2.426 -6.430 -4.496 -3.621 0.199 0.211
[-6.001, 1.148] [ -14.684, 1.824 ] [ -10.917, 1.925 ] [ -11.496, 4.254 ] [ -5.151, 5.548 ] [ -5.565, 5.988 ]

24 -3.011 -9.011 -3.498 -2.979 0.971 -1.284
[-6.889, 0.868] [ -20.636, 2.614 ] [ -12.557, 5.560 ] [ -10.352, 4.395 ] [ -4.765, 6.707 ] [ -5.992, 3.424 ]

Easing Actions
APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

0 0.125 -0.534 -0.040 0.171 0.148 0.548∗
[-0.174, 0.424] [ -1.195, 0.128 ] [ -0.452, 0.371 ] [ -0.233, 0.574 ] [ -0.696, 0.992 ] [ 0.211, 0.884 ]

6 0.155 -1.525 -0.395 0.686 0.962 1.653
[-0.865, 1.174] [ -3.725, 0.674 ] [ -2.315, 1.525 ] [ -1.024, 2.397 ] [-0.270, 2.195 ] [ -0.300, 3.605 ]

12 -0.718 -2.187 -2.139 -0.767 -0.026 0.658
[-2.223, 0.787] [ -4.481, 0.106 ] [ -5.553, 1.274 ] [ -3.780, 2.245 ] [ -3.087, 3.036 ] [ -1.541, 2.858 ]

18 -1.360 -3.042 -1.820 -1.847 0.290 -0.828
[-3.225, 0.505] [ -8.531, 2.446 ] [ -4.185, 0.545 ] [ -4.432, 0.739 ] [ -4.386, 4.967 ] [ -4.825, 3.168 ]

24 -2.511∗ -3.978 -2.491 -2.677∗ -1.825 -0.406
[-4.492, -0.531] [ -8.343, 0.386 ] [ -5.898, 0.917 ] [ -5.042, -0.311 ] [ -5.418, 1.767 ] [ -4.404, 3.592 ]

Notes: APE denotes the average policy effects. The first column is months after the actions. * denotes significance at the
95% level. [ , ] are the 95% bootstrap confidence intervals for the estimator of QPE.

Table 5: QPE Estimates of Real Securities to Macroprudential Actions
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Tightening Actions
APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

0 0.003 -0.330 -0.184 0.141 0.188 0.123
[ -0.309, 0.314] [ -0.947, 0.286] [ -0.751, 0.383] [-0.392, 0.673] [ -0.149, 0.525] [ -0.269, 0.515]

6 0.245 -3.449 0.107 0.724 0.855 1.855
[ -1.854, 2.343] [ -9.261, 2.363] [ -3.269, 3.483] [ -1.320, 2.767] [ -0.881, 2.591] [ -0.947, 4.658]

12 0.732 -3.388 0.704 1.060 2.505 2.905
[ -2.929, 4.393] [ -10.786, 4.010] [ -4.724, 6.131] [ -1.872, 3.991] [ -0.943, 5.952] [ -1.113, 6.923]

18 1.182 -2.298 0.195 2.138 3.529 4.301
[ -3.907, 6.270] [-10.996, 6.401] [ -6.348, 6.739] [ -2.420, 6.697] [ -0.720, 7.778] [ -1.082, 9.684]

24 1.802 -0.881 0.169 4.015 3.742 3.192
[ -4.679, 8.282] [ -10.275, 8.513] [ -7.485, 7.824] [ -4.275, 12.305] [ -0.594, 8.077] [ -1.817, 8.201]

Easing Actions
APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

0 0.016 -0.106 0.094 0.056 0.155 0.134
[ -0.144, 0.177] [ -0.585, 0.372] [-0.152 , 0.340] [ -0.095, 0.206] [ -0.077, 0.387] [ -0.114, 0.382]

6 -0.033 -0.202 0.424 0.156 0.551 0.815
[ -0.815, 0.749] [ -2.074, 1.671] [ -1.451, 2.300] [ -0.946, 1.257] [ -0.286, 1.388] [ -0.504, 2.133]

12 -0.318 -1.173 -0.356 1.041 1.051 0.887
[ -1.626, 0.990] [ -4.250, 1.905] [ -2.947, 2.235] [ -0.560, 2.641] [ -0.726, 2.828] [ -0.548, 2.321]

18 -0.543 -0.894 -0.515 1.505∗ 1.432 2.046
[ -2.340, 1.254] [ -3.992, 2.203] [ -5.559, 4.528] [ -2.292, 5.302] [ -0.373, 3.237] [ -0.167, 4.258]

24 -0.399 -3.192 -1.468 1.556 2.268 2.490
[ -2.705, 1.907] [ -8.212, 1.828] [ -7.019, 4.083] [-1.224, 4.335] [ -0.062, 4.598] [ -0.276, 5.256]

Notes: APE denotes the average policy effects. The first column is months after the actions. * denotes significance at the
95% level. [ , ] are the 95% bootstrap confidence intervals for the estimator of QPE.

Table 6: QPE Estimates of Real Loans and Leases to Macroprudential Actions

Tightening Actions
APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

0 -0.128 -0.223 0.006 -0.020 -0.100 -0.208∗
[-0.393, 0.137] [-0.810, 0.363 ] [-0.378, 0.390 ] [-0.190, 0.149 ] [-0.294, 0.094 ] [-0.408, -0.009]

6 -0.581 2.174 -1.084 -0.132 -0.773 0.322
[-2.333, 1.171] [-4.537, 0.188 ] [-3.213, 1.045 ] [-1.657, 1.394 ] [-2.632, 1.085 ] [-1.727, 2.371]

12 -0.376 -0.696 -1.601 -0.556 -0.027 1.033
[-3.838, 3.086] [-3.139, 1.747 ] [-4.754, 1.553 ] [-2.926, 1.815 ] [-2.089, 2.034 ] [-1.757, 3.823]

18 0.062 -1.023 -0.334 0.328 -0.646 2.553
[-5.323, 5.448] [-4.167, 2.121 ] [-4.061, 3.393 ] [-2.922, 3.578 ] [-2.403, 1.111 ] [-2.712, 7.818]

24 0.591 -1.743 -0.321 0.260 -0.214 5.161
[-6.680, 7.863] [-5.984, 2.499 ] [-4.528, 3.885 ] [-2.709, 3.229 ] [-3.192, 2.763 ] [-2.179, 12.500]

Easing Actions
APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

0 0.075 -0.129 -0.014 0.151 0.253 0.370∗
[-0.082, 0.233] [ -0.501, 0.243 ] [ -0.234, 0.207 ] [ -0.063, 0.365 ] [ 0.039, 0.466 ] [ 0.125, 0.615 ]

6 0.122 0.266 0.047 1.173∗ 1.050∗ 1.008∗
[-0.601, 0.844] [ -1.941, 2.474 ] [ -1.911, 2.005 ] [ 0.554, 1.793 ] [ 0.510, 1.589 ] [ 0.053, 1.963 ]

12 -0.195 -0.164 0.866 1.022∗ 1.105 1.344
[-1.413, 1.023] [ -1.013, 0.685 ] [ -1.527, 3.258 ] [ 0.119, 1.925 ] [ -0.009, 2.219 ] [ -0.231, 2.918 ]

18 -0.384 0.124 1.173 1.237∗ 0.676 2.018
[-2.060, 1.292] [ -2.302, 2.549 ] [ -1.118, 3.463 ] [ 0.045, 2.429 ] [ -0.401, 1.754 ] [ -1.338, 5.375 ]

24 -0.760 -0.155 0.254 0.865 0.750 1.579
[-2.926, 1.406] [ -2.428, 2.117 ] [ -2.774, 3.283 ] [-1.198, 2.928 ] [ -1.054, 2.554 ] [ -2.022, 5.180 ]

Notes: APE denotes the average policy effects. The first column is months after the actions. * denotes significance at the
95% level. [ , ] are the 95% bootstrap confidence intervals for the estimator of QPE.

Table 7: QPE Estimates of Nominal Bank Credit to Macroprudential Actions
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APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9
Tightening Actions

0 -0.243∗ -0.226 -0.260 -0.211 -0.104 -0.278∗
[-0.411, -0.076] [-0.656, 0.204] [-0.591, 0.071] [-0.574, 0.152] [-0.424, 0.217] [-0.544, -0.012]

3 -0.802∗ -1.924∗ -1.386 -0.454 0.097 0.009
[-1.451, -0.153] [-3.447, -0.400] [-3.195, 0.422] [-1.724, 0.816] [-0.665, 0.860] [-0.662, 0.680]

6 -1.162∗ -2.378∗ -1.842 -0.639 -0.142 -0.373
[-2.120, -0.205] [-4.304, -0.451] [-4.244, 0.560] [-2.669, 1.391] [-1.405, 1.120] [-1.299, 0.553]

9 -1.394∗ -2.917∗ -2.194 -0.730 -0.642 -0.441
[-2.678, -0.110] [-5.668, -0.167] [-5.456, 1.068] [-3.065, 1.604] [-2.262, 0.977] [-1.878, 0.996]

12 -1.164 -3.047 -1.878 -0.736 -0.070 0.368
[-2.858, 0.530] [-6.372, 0.278] [-5.443, 1.687] [-3.835, 2.363] [-2.394, 2.254] [-1.623, 2.358]

15 -1.082 -2.042 -2.703 -1.837 0.397 1.697
[-3.197, 1.033] [-5.054, 0.969] [-7.176, 1.770] [-5.677, 2.003] [-2.706, 3.501] [-0.983, 4.377]

18 -1.064 -1.902 -2.021 -2.986 -0.237 2.600
[-3.561, 1.433] [-5.989, 2.184] [-5.291, 1.249] [-8.097, 2.126] [-4.065, 3.59] [-1.262, 6.461]

21 -1.141 -1.984 -3.007 -3.339 -0.981 2.087
[-4.020, 1.737] [-6.272, 2.305] [-6.689, 0.674] [-8.376, 1.699] [-5.145, 3.184] [-1.006, 5.180]

24 -0.952 -1.024 -3.051 -2.551 -1.004 1.472
[-4.258, 2.353] [-6.648, 4.601] [-6.899, 0.796] [-6.923, 1.82] [-5.904, 3.896] [-2.758, 5.701]

Easing Actions
0 0.049 -0.38 -0.010 0.118 0.173 0.337∗

[-0.109, 0.207] [-0.868, 0.108] [-0.248, 0.227] [-0.102, 0.339] [-0.071, 0.417] [0.131, 0.543]
3 0.089 -0.656 -0.246 -0.028 0.671 1.081∗

[-0.341, 0.519] [-1.821, 0.509] [-0.997, 0.505] [-0.741, 0.684] [-0.078, 1.419] [0.222, 1.941]
6 0.016 -0.576 -0.078 0.388 0.701∗ 0.745∗

[-0.562, 0.593] [-1.731, 0.579] [-1.304, 1.147] [-0.805, 1.581] [0.074, 1.328] [0.056, 1.434]
9 -0.432 -1.499 -0.715 -0.037 0.677 0.529

[-1.238, 0.373] [-3.512, 0.514] [-2.025, 0.595] [-1.706, 1.631] [-0.055, 1.409] [-0.350, 1.408]
12 -0.568 -1.854 -0.879 0.358 0.533 0.102

[-1.572, 0.435] [-4.074, 0.366] [-2.618, 0.859] [-1.461, 2.178] [-0.453, 1.519] [-1.223, 1.428]
15 -0.739 -1.664 -1.417 0.426 0.567 0.393

[-1.900, 0.423] [-3.420, 0.093] [-3.512, 0.678] [-2.050, 2.901] [-0.500, 1.634] [-1.483, 2.269]
18 -0.967 -2.522 ∗ -2.432 0.680 0.257 0.704

[-2.355, 0.421] [-4.811, -0.234] [-5.280, 0.416] [-2.547, 3.906] [-1.354, 1.868] [-0.836, 2.243]
21 -1.274 -3.320∗ -2.809 -0.122 0.518 0.514

[-2.794, 0.246] [-6.393, -0.248] [-6.406, 0.788] [-2.841, 2.597] [-1.236, 2.272] [-1.297, 2.325]
24 -1.561 -4.000∗ -3.394 -0.603 0.407 0.961

[-3.215, 0.092] [-7.149, -0.852] [-7.365, 0.578] [-3.562, 2.357] [-2.022, 2.836] [-0.898, 2.821]
Notes: APE denotes the average policy effects. The first column is months after the actions. * denotes significance at the
95% level. [ , ] are the 95% bootstrap confidence intervals for the estimator of QPE.

Table 8: QPE Estimates of Macroprudential Policies (Ordered Probit Specification 2)

Tightening Actions
APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

0 -0.144 -0.166 -0.171 -0.121 -0.060 -0.162
[-0.330, 0.041] [ -0.619, 0.287 ] [ -0.540, 0.198 ] [ -0.461, 0.219 ] [ -0.433, 0.313 ] [ -0.483, 0.159 ]

6 -0.644 -2.268 0.366 0.962 0.281 0.213
[-1.844, 0.556] [ -4.594, 0.058 ] [ -3.497,4.229 ] [ -2.483, 4.407 ] [ -1.250, 1.813 ] [ -1.250, 1.675 ]

12 -0.781 -2.708 -0.708 -0.037 1.521 0.754
[-2.905, 1.342] [ -6.717, 1.301 ] [ -5.195, 3.779 ] [ -3.694, 3.620 ] [-2.254, 5.295 ] [ -1.625, 3.133 ]

18 -0.796 -0.761 -1.173 0.039 1.447 2.630
[-3.834, 2.241] [ -5.532, 4.011 ] [ -4.984, 2.638 ] [ -4.101, 4.180 ] [ -3.602, 6.497 ] [ -0.991, 6.250 ]

24 -0.701 -0.115 -0.159 0.417 2.710 4.029
[-4.650, 3.247] [ -6.849, 6.618 ] [ -5.014, 4.695 ] [ -3.971, 4.805 ] [ -3.661, 9.082 ] [ -0.632, 8.691 ]

Easing Actions
APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

0 0.035 -0.330 -0.051 0.118 0.111 0.365∗
[-0.141, 0.211] [ -0.851, 0.190 ] [ -0.314, 0.212 ] [ -0.100, 0.337 ] [ -0.168, 0.390 ] [ 0.051, 0.680 ]

6 0.102 -0.364 0.195 0.931 0.979∗ 0.554
[-0.533, 0.736] [ -1.773, 1.046 ] [ -0.976, 1.365 ] [ -0.089, 1.950 ] [0.162, 1.797 ] [ -0.527, 1.634 ]

12 -0.301 -1.586 -0.434 0.639 0.923 0.270
[-1.365, 0.764] [ -4.327, 1.154 ] [ -2.383, 1.515 ] [ -1.222, 2.500 ] [ -0.100, 1.946 ] [ -1.135, 1.675 ]

18 -0.632 -2.522 -1.895 1.134 1.427 1.260
[-2.191, 0.926] [ -5.660, 0.615 ] [ -4.771, 0.981 ] [ -2.624, 4.892 ] [ -0.093, 2.947 ] [ -1.671, 4.191]

24 -1.209 -3.994 -1.711 0.500 0.945 1.173
[-3.104, 0.685] [ -8.480, 0.492 ] [ -5.062, 1.640 ] [-3.313, 4.313 ] [ -1.604, 3.494 ] [ -0.933, 3.280 ]

Notes: APE denotes the average policy effects. The first column is months after the actions. * denotes significance at the
95% level. [ , ] are the 95% bootstrap confidence intervals for the estimator of QPE.

Table 9: QPE Estimates of Macroprudential Policies (Five Categories)
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APE τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9
Tightening Actions

0 -0.258∗ -0.022 -0.236 -0.311 -0.190 -0.334∗
 [ -0.417 ,  -0.098 ]  [ -0.476 ,  0.431 ]  [ -0.565 ,  0.092 ]  [ -0.679 ,  0.056 ]  [ -0.487 ,  0.106 ]  [ -0.575 ,  -0.094 ] 

3 -0.917∗ -1.598∗ -1.289 -1.084 -0.480 -0.099
 [ -1.531 ,  -0.303 ]  [ -2.623 ,  -0.574 ]  [ -2.647 ,  0.068 ]  [ -2.43 ,  0.262 ]  [ -1.489 ,  0.529 ]  [ -0.844 ,  0.645 ] 

6 -1.374∗ -1.566 -1.856 -0.830 -0.955 -0.657
 [ -2.258 ,  -0.489 ]  [ -3.407 ,  0.275 ]  [ -3.956 ,  0.244 ]  [ -3.018 ,  1.358 ]  [ -2.272 ,  0.362 ]  [ -1.666 ,  0.352 ] 

9 -1.764∗ -1.928 -1.94 -2.156 -1.384 -0.925
 [ -2.929 ,  -0.598 ]  [ -4.371 ,  0.516 ]  [ -4.232 ,  0.353 ]  [ -4.53 ,  0.217 ]  [ -3.391 ,  0.623 ]  [ -2.214 ,  0.365 ] 

12 -1.507∗ -1.429 -2.036 -1.749 -1.79 -0.125
 [ -2.983 ,  -0.03 ]  [ -4.158 ,  1.301 ]  [ -5.082 ,  1.011 ]  [ -4.253 ,  0.754 ]  [ -4.449 ,  0.868 ]  [ -1.687 ,  1.437 ] 

15 -1.353 -0.136 -2.315 -2.366 -1.032 1.102
 [ -3.08 ,  0.374 ]  [ -2.949 ,  2.676 ]  [ -5.895 ,  1.264 ]  [ -5.406 ,  0.674 ]  [ -3.504 ,  1.441 ]  [ -1.775 ,  3.978 ] 

18 -1.437 0.556 -1.889 -3.611 -0.833 1.903
 [ -3.357 ,  0.483 ]  [ -2.635 ,  3.748 ]  [ -5.302 ,  1.524 ]  [ -8.695 ,  1.473 ]  [ -4.515 ,  2.849 ]  [ -2.104 ,  5.91 ] 

21 -1.522 0.248 -2.141 -3.235 -1.442 1.449
[ -3.705 ,  0.66 ]  [ -3.833 ,  4.328 ]  [ -5.487 ,  1.205 ]  [ -7.616 ,  1.146 ]  [ -5.661 ,  2.776 ]  [ -1.433 ,  4.331 ] 

24 -1.277 0.564 -2.271 -2.902 -1.683 0.988
 [ -3.687 ,  1.133 ]  [ -4.427 ,  5.555 ]  [ -5.689 ,  1.148 ]  [ -6.852 ,  1.048 ]  [ -6.618 ,  3.252 ]  [ -2.877 ,  4.853 ] 

Easing Actions
0 0.154 -0.236 0.079 0.164 0.129 0.337∗

[-0.017, 0.325] [-0.725, 0.253] [-0.152, 0.310] [-0.058, 0.386] [-0.150, 0.408] [0.092, 0.582]
3 0.298 -0.331 0.247 -0.042 0.569 0.973∗

[-0.151, 0.748] [-1.552, 0.890] [-0.506, 0.999] [-0.829, 0.744] [-0.064, 1.203] [0.246, 1.700]
6 0.356 -0.124 0.120 0.597 0.850∗ 0.404

[-0.280, 0.993] [-1.108, 0.861] [-1.119, 1.359] [-0.572, 1.765] [0.110, 1.590] [-0.212, 1.020]
9 -0.037 -0.814 -0.236 -0.212 0.492 0.240

[-0.903, 0.829] [-2.932, 1.305] [-1.483, 1.011] [-2.068, 1.644] [-0.235, 1.220] [-0.850, 1.330]
12 -0.001 -0.345 -0.528 0.780 0.547 -0.223

[-1.044, 1.042] [-2.798, 2.108] [-2.496, 1.441] [-1.521, 3.081] [-0.494, 1.587] [-1.175, 0.729]
15 -0.005 0.446 -0.465 0.544 0.135 0.250

[-1.215, 1.204] [-2.026, 2.918] [-3.089, 2.159] [-1.936, 3.024] [-0.971, 1.241] [-1.136, 1.635]
18 -0.066 -0.064 -2.191 0.487 -0.139 0.564

[-1.471, 1.339] [-2.529, 2.402] [-6.216, 1.834] [-1.609, 2.583] [-2.066, 1.789] [-0.818, 1.946]
21 -0.371 0.454 -2.721 0.711 0.603 -0.124

[-1.898, 1.157] [-2.465, 3.372] [-7.396, 1.954] [-1.818, 3.239] [-1.326, 2.531] [-0.958, 0.710]
24 -0.593 -1.734 -3.201 -0.155 0.017 0.364

[-2.186, 1.000] [-4.572, 1.104] [-7.874, 1.472] [-2.528, 2.217] [-2.603, 2.636] [-1.351, 2.078]
Notes: APE denotes the average policy effects. The first column is months after the actions. * denotes significance at the
95% level. [ , ] are the 95% bootstrap confidence intervals for the estimator of QPE.

Table 10: Responses of Real Bank Credit to Macroprudential Actions (Period: 1948M2–
1983M12)
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Figure 2: Macroprudential Policy Effects: Tightening Actions
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Supplement to “Quantile Policy Effects: An
Application to US Macroprudential Policy”

The supplement appendix outlines all the proof of Lemmas and Theorems in the main
paper, the step-by-step implementation procedures for constructing pointwise confidence
intervals and confidence bands for quantile policy effects (QPE), and the sensitivity analysis
of the unconfoundedness assumption.

1 Lemmas and Theorems

For ease of reference, we repeat some definitions and all assumptions from the main paper.

First, define Y ψ
t,h(d) as the potential outcome for d ∈ D. Subsequently, the observed

outcomes Yt+h are equal to Y ψ
t,h(d) if Dt is equal to d:

Yt+h =
∑
d∈D

Y ψ
t,h(d) · 1{Dt = d}. (1)

Additionally, let the outcome variable and the policy variable be generated as the following:

Yt = Y (Dt, Zt, ut), Dt = D(Zt, ψ, εt), (2)

where ut and εt denote unobserved variables. Then, all assumptions are as follows:

Assumption 1 (Unconfoundedness) Y ψ
t,h(dj) ⊥ Dt|Zt for all h ≥ 0 and for all dj, with ψ

fixed, ψ ∈ Ψ.

Assumption 2 (Overlap) The propensity score function pj(Zt, ψ) > 0 for all Zt and for

all j ∈ {0, · · · , J}. In addition,
∑J

j=0 p
j(Zt, ψ) = 1 for all Zt.

Assumption 3 (Structural Model) Assume that

1. Yt and Dt are generated according to (2);

2. {εt}∞t=1 and {ut}∞t=1 are sequences of i.i.d. random variables;
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3. {εt}∞t=1, {ut}∞t=1 and {Z ′
e,t}∞t=1 are jointly independent.

Assumption 4 (Weak dependence of the data) The stationary sequence χt is β-mixing

with βi = O(i−q) and q > p/(p− 2) for some 2 < p <∞.

Assumption 5 Assume that the parameter ψ ∈ Ψ where Ψ ⊂ Rkψ is a compact set and

the number of covariates kψ <∞.

Assumption 6 (Parametric Propensity Scores) Assume that for all j ∈ {0, · · · , J},

1. E[1{Dt = dj}|Zt] = pjt(Zt, ψ0), and for all ψ ̸= ψ0, E[1{Dt = dj}|Zt] ̸= pj(Zt, ψ);

2. for all Zt, pj(Zt, ψ) is differentiable with respect to ψ for ψ ∈ Nδ(ψ0) ≡ {ψ ∈

Ψ|∥ψ − ψ0∥ ≤ δ} and some δ > 0;

3. let gj(Zt, ψ) = 1/pj(Zt, ψ). E[supψ∈Nδ(ψ0) |g
j(Zt, ψ0)|ε] ≤M , E[supψ∈Nδ(ψ0) ∥∂g

j(Zt, ψ0)/∂ψ∥ε] ≤

M and E[supψ∈Nδ(ψ0) ∥∂
2gj(Zt, ψ)/∂ψ∂ψ

′∥ε] ≤ M with M < ∞ and for some 2 <

ε <∞.

Assumption 7 (Asymptotic properties of ψ̂)
√
T (ψ̂−ψ0) = T−1/2

∑T
t=1 ℓ(Dt, Zt, ψ0)+op(1)

with E[∥ℓ(Dt, Zt, ψ0)∥p] <∞, where p is the same as in Assumption 4.

Assumption 8 For all h ≥ 0 and j ∈ {0, · · · , J},

1. Y ψ
t,h(dj) has convex and compact supports [qlj, q

u
j ];

2. F h
j (q, ψ) is a continuous function on [qlj, q

u
j ].

Assumption 9 For all h ≥ 0 and j ∈ {0, · · · , J}, fψh (q, d) is continuous and bounded

away from 0 on [qlj, q
u
j ].

Assumption 10 (Asymptotic properties of ψ̂b) Assume that
√
T (ψ̂b−ψ0) = T−1/2

∑T
t=1 ℓ(D

b
t , Z

b
t , ψ0)+

op(1).
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Assumption 11 (Block size) Assume that L = C ·T ρ with 0 < ρ < (p−2)/(2p−2)) where

p is the same as in Assumption 4.

Lemma 1 (Identification of distribution functions) Suppose Assumptions 1 and 2 hold.

The distribution function F h
j (q, ψ) can be identified by the observed data as

F h
j (q, ψ) = E

[
1{Dt = dj} · 1{Yt+h ≤ q}

pj(Zt, ψ)

]
.

Proof of Lemma 1:

For the specific policy dj,

E
[1{Dt = dj}
pj(Zt, ψ)

· 1{Yt+h ≤ q}
]

=E

[
E
[1{Dt = dj}
pj(Zt, ψ)

· 1{Yt+h ≤ q}
∣∣∣Zt]]

=E

[
1

pj(Zt, ψ)
E
[
1{Dt = dj} · 1{Yt+h ≤ q}

∣∣∣Zt]]
=E

[
1

pj(Zt, ψ)
· pj(Zt, ψ) · E

[
1{Dt = dj} · 1{Yt+h ≤ q}

∣∣∣Zt, Dt = dj

]]
=E
[
E
[
1{Yt+h ≤ q}

∣∣∣Zt, Dt = dj
]]

=E
[
E
[
1{Y ψ

t,h(dj) ≤ q}
∣∣∣Zt, Dt = dj

]]
=E
[
E
[
1{Y ψ

t,h(dj) ≤ q}
∣∣∣Zt]]

=F h
j (q, ψ),

where the first equality holds by the law of iterated expectations, the third by the law of

total probability, the fifth by the potential outcome framework in (1), and the sixth by the

unconfoundedness assumption. ■

Lemma 2 If Assumption 3 holds, Assumption 1 holds.

Proof of Lemma 2:

The proof for the case when Zt = Ze,t is straightforward, so we omit the details. For sim-

plicity, assume that Zt = (Yt−1, Z
′
e,t)

′. Note that Yt(d) = Y (d, Zt, ut) and Dt = D(Zt, ψ, εt),
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so conditional on Zt, Y (d) which is a function of ut is independent of Dt which is a function

of εt. Next, note that

Yt+1 = Y (Dt+1, Yt, Ze,t+1, ut+1) = Y (D((Yt, Ze,t+1, ψ, εt+1)), Yt, Ze,t+1, ut+1),

and it follows that

Y ψ
t,1(d) = Y (D((Yt(d), Ze,t+1, ψ, εt+1)), Yt(d), Ze,t+1, ut+1).

Then, conditioning on Zt = (Yt−1, Ze,t), we have Y ψ
t,1(d) is a function of Yt(d), Ze,t+1, εt+1

and ut+1 which are jointly independent of εt, so Y ψ
t,1(d) is independent of Dt which is a

function of εt conditioning on Zt. Similarly,

Yt+2 = Y (Dt+2, Yt+1, Ze,t+2, ut+2) = Y (D((Yt+1, Ze,t+2, ψ, εt+2)), Yt+1, Ze,t+2, , ut+2),

so

Y ψ
t,2(d) = Y (D((Y ψ

t,1(d), Ze,t+2, ψ, εt+2)), Y
ψ
t,1(d), Ze,t+2, , ut+2).

It follows that conditioning on Zt, Y ψ
t,2(d) is independent of Dt. Then, by induction, the

same argument shows that Y ψ
t,h(d) is independent of Dt conditioning on Zt. A similar

argument applies to the case when Zy,t is a vector of lagged outcome variables. This

completes the proof of Lemma 2. ■

Theorem 1 (Asymptotic properties of F̂ h
j (q, ψ̂)) Suppose that Assumptions 1–8 hold. Then,

√
T (F̂ h

· (·, ψ̂)− F h
· (·, ψ0)) ⇒ F(·, ·),

where ⇒ denotes weak convergence, and F(·, ·) is a mean-zero Gaussian process with

covariance functions,

ΩF((dj1, q1), (dj2, q2)) = lim
T→∞

T−1E

[(
T∑
t=1

wt,dj1(q1, ψ0)

)(
T∑
t=1

wt,dj2(q2, ψ0)

)′]
,

4



where

wt,dj(q, ψ0) =
(
1{Yt+h ≤ q} − F h

j (q, ψ0)
)
1{Dt = dj} · gj(Zt, ψ0)

+ E
[(
1{Yt+h ≤ q} − F h

j (q, ψ0)
)
1{Dt = dj} ·

∂gj(Zt, ψ0)

∂ψ′

]
ℓ(Dt, Zt, ψ0),

and gj(Zt, ψ0) = 1/pj(Zt, ψ0).

Proof of Theorem 1:

Let

ϕt,dj(q, ψ0) = 1{Dt = dj} · 1{Yt+h ≤ q} · gj(Zt, ψ0)− F h
j (q, ψ0) (3)

+ E
[
1{Dt = dj} · 1{Yt+h ≤ q} · ∂g

j(Zt, ψ0)

∂ψ′

]
ℓ(Dt, Zt, ψ0).

Rewrite
√
T F̃ h

j (q, ψ) = T−1/2
∑T

t=1 1{Dt = dj} · 1{Yt+h ≤ q} · gj(Zt, ψ). Note that

√
T (F̃ h

j (q, ψ̂)− F h
j (q, ψ0))

=
1√
T

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q} · gj(Zt, ψ0)− F h
j (q, ψ0)

+
1

T

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q} · ∂g
j(Zt, ψ0)

∂ψ′

√
T (ψ̂ − ψ0)

+
1

T

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q} · (ψ̂ − ψ0)
′

2

∂2gj(Zt, ψ̌)

∂ψ′∂ψ

√
T (ψ̂ − ψ0)

=
1√
T

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q} · gj(Zt, ψ0)− F h
j (q, ψ0)

+
1

T

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q} · ∂g
j(Zt, ψ0)

∂ψ′

√
T (ψ̂ − ψ0) + op(1)

=
1√
T

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q} · gj(Zt, ψ0)− F h
j (q, ψ0)

+ E
[
1{Dt = dj} · 1{yt+h ≤ q} · ∂g

j(Zt, ψ0)

∂ψ′

]√
T (ψ̂ − ψ0) + op(1)

=
1√
T

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q} · gj(Zt, ψ0)− F h
j (q, ψ0)

+
1√
T

T∑
t=1

E
[
1{Dt = dj} · 1{Yt+h ≤ q} · ∂g

j(Zt, ψ0)

∂ψ′

]
ℓ(Dt, Zt, ψ0) + op(1)
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≡ 1√
T

T∑
t=1

ϕt,dj(q, ψ0) + op(1), (4)

where ψ̌ is between ψ0 and ψ̂ and the op(1) result holds uniformly over q. The first equality

holds by a second-order mean value expansion of
√
T F̃ h

j (q, ψ̂) around ψ0. The second

equality holds because

sup
q∈[qlj ,quj ]

∣∣∣ 1
T

T∑
t=1

1{Dt = dj} · 1{yt+h ≤ q} · (ψ̂ − ψ0)
′

2

∂2gj(Zt, ψ̌)

∂ψ′∂ψ

√
T (ψ̂ − ψ0)

∣∣∣
≤
√
T∥ψ̂ − ψ0∥2 ·

1

T

T∑
t=1

sup
ψ∈Nδ(ψ0)

∥∥∥∂2gj(Zt, ψ)
∂ψ′∂ψ

∥∥∥ = op(1) ·Op(1),

in which
√
T∥ψ̂ − ψ0∥2 = op(1) and T−1

∑T
t=1 supψ∈Nδ(ψ0)

∥∥∂2gj(Zt,ψ)
∂ψ′∂ψ

∥∥ = Op(1) by Assump-

tion 7. The third equality holds because {1{Dt = dj} ·1{Yt+h ≤ q} · ∂g
j(Zt,ψ0)
∂ψ′ : q ∈ [qlj, q

u
j ]}

is a VC class of functions, and under Assumptions 4 and 6, the functional CLT of Arcones

and Yu (1994) implies that

sup
q∈[qlj ,quj ]

∣∣∣ 1
T

T∑
t=1

1{Dt = dj} · 1{Yt+h ≤ q} · ∂g
j(Zt, ψ0)

∂ψ′

− E
[
1{Dt = dj} · 1{Yt+h ≤ q} · ∂g

j(Zt, ψ0)

∂ψ′

]∣∣∣ = op(1).

Under Assumption 7, ∥ψ̂ − ψ0∥ = Op(T
−1/2), so

√
T∥ψ̂ − ψ0∥2 = Op(T

−1/2) = op(1), and

the last equality holds.

By a delta method and (4), we now have

√
T
(
F̂ h
j (q, ψ̂)− F h

j (q, ψ0)
)

=
√
T
(
F̃ h
j (q, ψ̂)− F h

j (q, ψ0)F̃
h
j (q

u
j , ψ̂)

)
+ op(1)

=
√
T
(
F̃ h
j (q, ψ̂)− F h

j (q, ψ0)
)
− F h

j (q, ψ0)
√
T
(
F̃ h
j (q

u
j , ψ̂)− 1

)
+ op(1)

=
1√
T

T∑
t=1

ϕt,dj(q, ψ0) + op(1)− F h
j (q, ψ0)

1√
T

T∑
t=1

ϕt,dj(q
u
j , ψ0) + op(1) + op(1)

≡ 1√
T

T∑
t=1

wt,dj(q, ψ0) + op(1),

6



where

wt,dj(q, ψ0) =ϕt,dj(q, ψ0)− F h
j (q, ψ0) · ϕt,dj(qu, ψ0) (5)

=
(
1{Yt+h ≤ q} − F h

j (q, ψ0)
)
1{Dt = dj} · gj(Zt, ψ0)

+ E
[(
1{Yt+h ≤ q} − F h

j (q, ψ0)
)
1{Dt = dj} ·

∂gj(Zt, ψ0)

∂ψ′

]
ℓ(Dt, Zt, ψ0).

Note that {1{Yt+h ≤ q}−F h
j (q, ψ0) : dj = 1, . . . , J, q ∈ [ql, qu]} is a VC class of functions,

and this implies that {1{Dt = dj}(1{Yt+h ≤ q} − F h
j (q, ψ0)) · gj(Zt, ψ0) : dj = 1, . . . , J, q ∈

[ql, qu]} is a VC class of functions, and so is each element of {E
[
1{Dt = dj} · (1{Yt+h ≤

q}−F h
j (q, ψ0)) · ∂g

j(Zt,ψ0)
∂ψ′

]
: dj = 1, . . . , J, q ∈ [ql, qu]}. This further implies that {E

[
1{Dt =

dj} · (1{Yt+h ≤ q}−F h
j (q, ψ0)) · ∂g

j(Zt,ψ0)
∂ψ′

]
· ℓ(Dt, Zt, ψ0) : dj = 1, . . . , J, q ∈ [ql, qu]} is a VC

class of functions. It then follows that {wt,dj(q, ψ0) : j = 1, . . . , J, q ∈ [ql, qu]} is a VC class

of functions. By the functional CLT of Arcones and Yu (1994), T−1/2
∑T

t=1wt,dj(q, ψ0) obeys

the functional CLT and weakly converges to a Gaussian process F(·, ·) with mean zero and

covariance functions ΩF((dj1, q1), (dj2, q2)). It then follows that
√
T (F̂ h

j (q, ψ̂)− F h
j (q, ψ0))

weakly converges to a Gaussian process F(·, ·). ■

Theorem 2 (Asymptotic properties of Q̂h
j (τ, ψ̂)) Suppose that Assumptions 1–9 hold. Then,

√
T (Q̂h

· (·, ψ̂)−Qh
· (·, ψ0)) ⇒ Q(·, ·),

where Q(·, ·) is a mean-zero Gaussian process with covariance functions,

ΩQ((dj1, τ1), (dj2, τ2)) = lim
T→∞

T−1E

[(
T∑
t=1

wQt,dj1
(τ1, ψ0)

)(
T∑
t=1

wQt,dj2
(τ2, ψ0)

)′]
,

where

wQt,dj(τ, ψ0) = −
wt,dj(Q

h
j (τ, ψ0), ψ0)

fψh (Q
h
j (τ, ψ0), dj)

,

with wt,dj(·, ψ) defined in Theorem 1.
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Proof of Theorem 2:

Given Assumption 9, and given that the quantile map is Hadamard differentiable, the result

follows when we apply the functional delta method.

√
T [Q̂h

j (τ, ψ̂)−Qh
j (τ, ψ0)]

= − 1

fψh (Q
h
j (τ, ψ0), dj)

1√
T

T∑
t=1

wt,dj(Q
h
j (τ, ψ0), ψ0) + op(1).

See Lemma 3.9.23 and Example 3.9.24 of van der Vaart and Wellner (1996, pp. 386-387).

■

Theorem 3 (Asymptotic properties of ∆̂h
· (·, ψ̂)) Suppose that Assumptions 1–9 hold. Then,

√
T (∆̂h

· (·, ψ̂)−∆h
· (·, ψ0)) ⇒ R(·, ·),

where R(·, ·) is a mean-zero Gaussian process with covariance functions,

ΩR
j ((dj1, τ1), (dj2, τ2)) = lim

T→∞
T−1E

[(
T∑
t=1

w∆
t,dj1

(τ1;ψ0)

)(
T∑
t=1

w∆
t,dj2

(τ2;ψ0)

)′]
,

where

w∆
t,dj

(τ ;ψ0) = −

[
wt,dj(Q

h
j (τ, ψ0), ψ0)

fψh (Q
h
j (τ, ψ0), dj)

− wt,d0(Q
h
0(τ, ψ0), ψ0)

fψh (Q
h
0(τ, ψ0), d0)

]
,

with wt,dj(·, ψ) defined in Theorem 1.

Proof of Theorem 3:

The QPE is the difference between specific quantiles of the potential outcomes of policies

dj and d0 in the following:

∆h
j (τ, ψ0) = Qh

j (τ, ψ0)−Qh
0(τ, ψ0).

The estimator of QPE is the difference between sample quantile functions of the potential

outcomes, which is

∆̂h
j (τ, ψ̂) = Q̂h

j (τ, ψ̂)− Q̂h
0(τ, ψ̂).
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Under the same Assumptions of Theorems 1 and 2, we have

√
T
(
∆̂h
j (τ, ψ̂)−∆h

j (τ, ψ0)
)

=
√
T [Q̂h

j (τ, ψ̂)− Q̂h
0(τ, ψ̂)−Qh

j (τ, ψ0) +Qh
0(τ, ψ0)]

=
√
T [Q̂h

j (τ, ψ̂)−Qh
j (τ, ψ0)]−

√
T [Q̂h

0(τ, ψ̂)−Qh
0(τ, ψ0)]

= − 1√
T

T∑
t=1

w∆
t,dj

(τ ;ψ0) + op(1),

where

w∆
t,dj

(τ ;ψ0) = −

[
wt,j(Q

h
j (τ, ψ0), ψ0)

fψh (Q
h
j (τ, ψ0), dj)

− wt,j(Q
h
0(τ, ψ0), ψ0)

fψh (Q
h
0(τ, ψ0), d0)

]
.

■

Theorem 4 Suppose that Assumptions 1–11 hold. Then, conditional on the sample path

with probability approaching one,

√
T (F̂ h,b

· (·, ψ̂b)− F̂ h
· (·, ψ̂)) ⇒ F(·, ·),

√
T (Q̂h,b

· (·, ψ̂b)− Q̂h
· (·, ψ̂)) ⇒ Q(·, ·),

√
T (∆̂h,b

· (·, ψ̂b)− ∆̂h
· (·, ψ̂)) ⇒ R(·, ·),

where F(·, ·), Q(·, ·), and R(·, ·) are given in Theorems 1–3.

Proof of Theorem 4:

We prove the results associated with the distribution function because the arguments for

other cases are similar. Note that by the same arguments of Theorem 1 and with Assump-

tion 10, we can show that

√
T
(
F̂ h,b
j (q, ψ̂b)− F h

j (q, ψ0)
)
=

1√
T

T∑
t=1

wbt,dj(q, ψ0) + op(1),

where

wbt,dj(q, ψ0) =
(
1{Y b

t+h ≤ q} − F h
j (q, ψ0)

)
1{Db

t = dj} · gj(Zb
t , ψ0)

+ E
[(
1{Y b

t+h ≤ q} − F h
j (q, ψ0)

)
1{Db

t = dj} ·
∂gj(Zt, ψ0)

∂ψ′

]
ℓ(Db

t , Z
b
t , ψ0).
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We then have

√
T
(
F̂ h,b
j (q, ψ̂b)− F̂ h

j (q, ψ̂)
)
=

1√
T

T∑
t=1

wbt,dj(q, ψ0)−
1√
T

T∑
t=1

wt,dj(q, ψ0) + op(1),

and by Theorem 2.5 of Radulović (2002), we have conditionally on the sample path with

probability approaching one,

1√
T

T∑
t=1

wbt,dj(q, ψ0)−
1√
T

T∑
t=1

wt,dj(q, ψ0) ⇒ F(·, ·).

Therefore, it follows conditional on the sample path with probability approaching one that
√
T [F̂ h,b

· (·, ψ̂b)− F̂ h
· (·, ψ̂)] ⇒ F(·, ·). ■

2 Implementation Procedures for Pointwise Intervals

and Confidence Bands

The implementation procedure for constructing pointwise confidence intervals for QPE can

be summarized as follows:

Implementation Procedure of Confidence Interval for QPE

1. Define the sample size as T and the length of the blocks as L = C ·T ρ. There are T −

L+1 different overlapping blocks, and the j-th block is denoted as {(Yt+h, Yt, Zt, Dt)}j+Lt=j

for j = 1, · · · , T − L+ 1.

2. Determine the smallest natural number, N , such that N ·L ≥ T . Obtain a bootstrap

sample by randomly sampling N blocks with replacement from the available T−L+1

blocks and lay them end-to-end in the order sampled. Discard the last NL − T

observations from the last sampled block.

3. For each bootstrap sample b = 1, · · · , B, compute the propensity score function

p̂bj(zt, ψ̂
b), the quantile functions Q̂h,b

j (τ, ψ̂b) and Q̂h,b
0 (τ, ψ̂b), and then calculate the

QPE estimates ∆̂h,b
j (τ, ψ̂b) = Q̂h,b

j (τ, ψ̂b)− Q̂h,b
0 (τ, ψ̂b).
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4. For each b, compute q̂j,b =
√
T
∣∣∆̂h,b

j (τ, ψ̂b)−∆̂h
j (τ, ψ̂)

∣∣ and collect {q̂j,b : b = 1, . . . , B}.

Let q̂j,(a) denote the (a)-th largest element in {q̂j,b : b = 1, . . . , B}, and ⌊c⌋ denotes

the largest integer smaller than or equal to c. Define q̂j,(⌊(1−α)∗B⌋) as the α-th quantile

of {q̂j,b : b = 1, . . . , B}.

5. Then, the two-sided 1 − α confidence interval of the estimator of QPE is given as

follows:

(
∆̂h
j (τ, ψ̂)−

q̂j,(⌊(1−α)∗B⌋)√
T

, ∆̂h
j (τ, ψ̂) +

q̂j,(⌊(1−α)∗B⌋)√
T

)
.

6. In addition, for each b, compute q̃j,b =
√
T
[
∆̂h,b
j (τ, ψ̂b)− ∆̂h

j (τ, ψ̂)
]

and collect {q̃j,b :

b = 1, . . . , B}. Let q̃j,(a) denote the (a)-th largest element in {q̃j,b : b = 1, . . . , B}.

Define q̃j,(⌊(1−α)∗B⌋) as the α-th quantile of {q̃j,b : b = 1, . . . , B}. Then, the one-sided

1− α confidence interval of the estimator of QPE is given as follows:

(
∆̂h
j (τ, ψ̂)−

q̃(j,⌊(1−α)∗B⌋)√
T

, ∞
)

or
(
−∞, ∆̂h

j (τ, ψ̂) +
q̃j,(⌊α∗B⌋)√

T

)
.

Next, we summarize the implementation procedure for the confidence band of QPE for

τ ∈ [τℓ, τu].

Implementation Procedure of Confidence Band for QPE

1. Define the sample size as T and the length of the blocks as L = C · T ρ. There are

T − L + 1 different overlapping blocks, and the j-th block is {(Yt+h, Yt, Zt, Dt)}j+Lt=j

for j = 1, · · · , T − L+ 1.

2. Determine the smallest natural number, N , such that N ·L ≥ T . Obtain a bootstrap

sample by randomly sampling N blocks with replacement from the available T−L+1

blocks and lay them end-to-end in the order sampled. Discard the last NL − T

observations from the last sampled block.
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3. For each bootstrap sample b = 1, · · · , B, compute the propensity score function

p̂bj(zt, ψ̂
b). Define a grid with K+1 evenly spaced points τ ∈ [τℓ, τℓ+u, , . . . , τu−u, τu],

where u = (τu−τℓ)/K. Calculate the quantile functions Q̂h,b
j (τ, ψ̂b) and Q̂h,b

0 (τ, ψ̂b) for

each τ in the grid, and then compute the QPE estimates ∆̂h,b
j (τ, ψ̂b) = Q̂h,b

j (τ, ψ̂b)−

Q̂h,b
0 (τ, ψ̂b).

4. For each b, compute ŵj,b =
√
T maxk∈{0,...,K}

∣∣∆̂h,b
j (τℓ + k · u, ψ̂b) − ∆̂h

j (τℓ + k · u, ψ̂)
∣∣

and collect {ŵj,b : b = 1 . . . , B}.

5. Define ŵj,(⌊(1−α)∗B⌋) as the α-th quantile of t {ŵj,b : b = 1 . . . , B}. Then, the two-sided

uniform 1− α confidence band of the estimator of QPE is given as follows:

{(
∆̂h
j (τ, ψ̂)−

ŵj,(⌊(1−α)∗B⌋)√
T

, ∆̂h
j (τ, ψ̂) +

ŵj,(⌊(1−α)∗B⌋)√
T

)
: τ ∈ [τℓ, τu]

}
.

3 Sensitivity Analysis of the Unconfoundedness As-

sumption

Although the unconfoundedness assumption (Assumption 1) is central to our paper, veri-

fying it can be intricate. Tests such as those proposed by Angrist and Kuersteiner (2011)

involve complex computations, making them impractical for our study. Therefore, this

section focuses on providing an empirical justification for this assumption. Section 3.1 in

the main paper discusses conditioning variables and employs these to estimate the propen-

sity score model. Assumption 1 assumes no unobserved or omitted variables to influence

treatment assignment and outcome once observed covariates are considered. To address

this, we employ sensitivity analyses to evaluate the potential impacts of omitted variables

on our results.1
1Forbes, Fratzscher, and Straub (2015) and Kuvshinov and Zimmermann (2019) also apply similar

methodologies when assessing the effects of omitted variables.
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To assess the sensitivity of our results to potential violations of the unconfoundedness

assumption due to omitted variables, we consider five variables that may be related to

both macroprudential policy and bank credit but are not included in our model. First,

we examine the variables for banking crises and stock market crashes from Reinhart and

Rogoff (2011). A banking crisis refers to widespread failure or instability in the banking

sector, leading to financial distress, liquidity problems, and systemic risks. It can have

severe consequences, such as credit crunches, economic contractions, and loss of confidence

in the financial system. Similarly, a stock market crash signifies a sudden and significant

decline in stock prices across a wide range of companies or the entire market, with potential

repercussions for the financial system and overall economic stability. These events can

expose vulnerabilities that require regulatory intervention through macroprudential policy.

Second, we consider other macroeconomic variables, including unemployment and long-

term interest rates (10-year treasury securities yield). High unemployment levels can

indicate economic slowdown and financial instability, prompting the implementation of

macroprudential policies to mitigate risks. Long-term interest rates influence investment

decisions, borrowing costs, and financial conditions. When these rates are high, they can

impact loan affordability, credit demand, and investment. In response, the macroprudential

policy may adjust regulations or implement measures to ensure financial system stability.

Third, we examine the variable of stock prices from Shiller (2016). Movements in stock

prices, especially significant declines, can erode investor confidence and potentially trigger

broader financial market instability. In such situations, macroprudential policy may be

employed to address the risks associated with market volatility and ensure the financial

system’s resilience. These variables can potentially affect macroprudential policy decisions

and bank credit; therefore, we analyze their impact on our results.

We conduct a series of sensitivity analyses by gradually incorporating the omitted vari-

ables into the benchmark model. First, we add one omitted variable at a time, then two,
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and finally, three variables. We examine the QPE impulse responses with and without

these variables, focusing on the 0.1-th, 0.5-th, and 0.90-th quantiles. Figure 1 displays the

results for one variable, Figure 2 for two variables, and Figure 3 for three variables. In

Figure 1, the black line represents the QPE results for the benchmark model. By contrast,

the red, blue, green, and gray dotted lines represent the QPE results when incorporating

banking crises, stock market crashes, unemployment, and long-term interest rates, respec-

tively. Interestingly, all four impulse responses are closely aligned and show no significant

differences between the results with and without the omitted variables.

Moving to Figure 2, we examine the QPE results for the benchmark model with the

inclusion of different combinations of two omitted variables: (1) banking crises and stock

market crash, (2) banking crises and unemployment, (3) stock market crash and unemploy-

ment, and (4) long-term interest rate and stock price. Similarly, all four impulse responses

remain remarkably similar, indicating minimal discrepancies between the results with and

without these omitted variables. Figure 3 delves into the QPE results for the benchmark

model with the inclusion of three omitted variables: (1) banking crises, stock market crash,

and unemployment, (2) stock market crash, unemployment, and long-term interest rates,

(3) banking crises, stock market crash, and unemployment, and (4) unemployment, long-

term interest rate, and stock price. Once again, the impulse responses demonstrate striking

similarity across all four scenarios, suggesting that the presence or absence of these omitted

variables has a limited impact on the results. Our sensitivity analyses show that our empir-

ical findings remain robust across different model specifications. The inclusion of various

omitted variables does not significantly alter the outcomes. Consequently, our empirical

evidence supports the validity of the underlying assumption.
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Figure 1: Sensitivity Analyses: One Omitted Variable
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Figure 2: Sensitivity Analyses: Two Omitted Variables
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Figure 3: Sensitivity Analyses: Three Omitted Variables

18


