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1 Introduction

This paper aims to derive the testable implications of the identification assumptions for the

local average treatment effect in fuzzy regression discontinuity (FRD) designs and develops a

specification test for such testable implications. Since the seminal work of Thistlethwaite and

Campbell (1960), the regression discontinuity (RD) design has gained popularity in applied

research to identify causal effects (see Lee and Lemieux, 2010; Cattaneo and Escanciano, 2017,

for surveys). In a sharp RD design, the treatment assignment is deterministically determined

by whether a running variable exceeds a known cutoff. On the other hand, the probability

of receiving the treatment changes discontinuously at the cutoff in an FRD design but not

necessarily from 0 to 1. In both designs, if units of the study located just above or below the

cutoff are “comparable”, then the RD design creates a “pseudo-random experiment” near the

cutoff and thus enables us to identify the causal effect of the treatment.

The identification idea is formalized by Hahn, Todd, and Van der Klaauw (2001) in a po-

tential outcome framework, where they provide conditions to identify the average treatment

effect (ATE) and the local average treatment effect (LATE) at the cutoff, respectively. These

conditions are revisited later by Lee (2008), Imbens and Lemieux (2008), Frandsen, Frölich, and

Melly (2012), Dong (2018), Bertanha and Moreira (2020), and Frandsen, Frölich, and Melly

(2012), among many others.

While the identification problem has been well studied, the credibility of identification as-

sumptions can be controversial in practice, which has motivated many specification tests in the

RD framework. There are two strands of tests. The first strand focuses on testing the identifying

assumptions for ATE-type parameters, among which Lee (2008) proposes testable implications

for sharp designs (i) the continuity of the density of a running variable at the cutoff, and (ii) the

continuity of the conditional distributions of predetermined variables given the running variable

at the cutoff. The testable implications in Lee (2008) are the foundation for many tests and can

be generalized to fuzzy designs; see, for example, McCrary (2008), Otsu, Xu, and Matsushita

(2013), Cattaneo, Jansson, and Ma (2020), and Bugni and Canay (2021) for testing the conti-

nuity of the running variable density, and Canay and Kamat (2018) for testing the continuity of

the conditional distributions of predetermined variables given the running variable. A common

feature of these tests is that they utilize running variables (and other baseline variables) but not

the outcome or treatment variables.
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The second strand focuses on testing the identifying assumptions of LATE-type parameters

in fuzzy regression discontinuity (FRD) designs. Arai, Hsu, Kitagawa, Mourifié, and Wan (2022)

show that if the parameter of interest is the LATE or the local quantile treatment effects, then

the continuity of the running variable density and the continuity of the predetermined variable

distributions are neither sufficient nor necessary; see discussions in McCrary (2008) too. They

test sharp implications of identifying assumptions that are similar to those used in Frandsen,

Frölich, and Melly (2012), including (i) the monotonicity of the treatment response to the

running variable at the cutoff (local monotonicity assumption), and (ii) the continuity of the

conditional distributions of the potential outcomes and complying status given the running

variable at the cutoff (local continuity in distributions assumption). These conditions, which

we refer to as the “FRD distributional assumptions” hereafter, are used to identify quantile or

distributional treatment effects for compliers.

Our paper contributes to the second strand by proposing a specification test for identify-

ing conditions for LATE. The identification assumptions required for LATE replace the local

continuity in distributions assumption with local continuity in means assumption, i.e. the ex-

pectations of potential outcomes given that the running variable is continuous near the cutoff.

The local monotonicity assumption and the local continuity in means assumption together are

referred as the “FRD mean assumptions”. We consider testing the FRD mean assumptions

useful for the following reasons. First, while it is true that the FRD distributional assumptions

imply the FRD mean assumptions, we will show in Section 2 that an arbitrary proper subset

of testable implications for the FRD distributional assumptions is neither sufficient nor neces-

sary for the FRD mean assumptions. Therefore, if we only test a pre-chosen subset of testable

implications of the FRD distributional assumptions, we may falsely reject the FRD mean as-

sumptions with a higher probability than the pre-specified level in practice when the FRD mean

assumptions actually hold in the data. Second, in many empirical applications, the mean effect

is of primary interest, and its identification requires only the weaker FRD mean assumptions

instead of the stronger FRD distributional assumptions. Therefore, as we will illustrate in an

empirical example in Section 5, it is possible that a test on FRD distributional assumptions

rejects, but our test on FRD mean assumptions accepts. In such cases, an easy-to-implement

specification test focusing directly on the FRD mean assumptions would be helpful. Our paper

fills this gap.
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Given the FRD mean assumptions, we derive sharp (observable) bounds for the expectation

of the potential outcome Y (1) for always-takers when the running variable approaches the cutoff

from below by applying the results in Horowitz and Manski (1995) and Lee (2009). Therefore,

its identifiable estimand must lie within the bounds too. This creates two inequality constraints

on the observed data distribution. We can obtain another two constraints by applying a similar

argument for the expectation of the potential outcome Y (0) for never-takers when the running

variable approaches the cutoff from above. We also show that if the observable data distribu-

tion satisfies these four constraints, there exists a joint distribution of potential outcomes and

complying status that satisfies the FRD mean assumptions and is observationally equivalent to

the observable data distribution.

The proposed specification test is based on these inequality constraints. Our test statistic is

significantly different from the test in Arai, Hsu, Kitagawa, Mourifié, and Wan (2022) because

the inequality constraints in our case involve nuisance parameters that have to be estimated

first. We need to account for the estimation effect when deriving the null distribution of the test

statistic. The critical value is constructed based on a weighted bootstrap and the generalized

moment selection (GMS) procedure that we use to approximate the null distribution. We show

that our test controls the size well under the null and is consistent against any fixed alternative.

Our paper also makes empirical contributions. We apply our test to four FRD designs in

the literature. The first is in Miller, Pinto, and Vera-Hernández (2013), who estimate the mean

effect of a publicly subsidized insurance program on Columbian households’ welfare, measured by

various outcome variables. Arai, Hsu, Kitagawa, Mourifié, and Wan (2022) find that the joint

assumptions of local monotonicity and local continuity in distributions are rejected for three

outcome variables: household educational spending, total spending on food, and total monthly

expenditure. Since the monotonicity assumption is likely to be satisfied by the institutional

rules, the testing result suggests that the distribution of these variables is discontinuous near

the cutoff. We revisit this empirical application and find that our mean test does not reject

the implication of local continuity in means. Our result, together with the findings in Arai,

Hsu, Kitagawa, Mourifié, and Wan (2022), suggest that the mean causal effect estimates in

Miller, Pinto, and Vera-Hernández (2013) are credible. Still, one needs to be cautious when

estimating the quantile LATE for these outcome variables. In our second empirical application,

we consider Israel’s schooling data used in Angrist and Lavy (1999) to study the effect of class size
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on students’ performance. In the application, Israel’s Maimonides’ rule creates a discontinuity of

class size with respect to enrollment. Our result re-confirms those in Angrist, Lavy, Leder-Luis,

and Shany (2019) and Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), and shows no evidence of

failing FRD identification assumptions. In our third application, we revisit Romanian secondary

school data, which Pop-Eleches and Urquiola (2013) use to identify the effect of school quality

on students’ academic performance. The probability of enrollment into better schools changes

discontinuously in transition scores because the centralized allocation process first meets the

need for “better students”. We find no evidence to reject the FRD mean assumptions. The

final application uses data from Battistin, Brugiavini, Rettore, and Weber (2009), who study

the effect of retirement on Italian seniors’ consumption using the pension eligibility policy as

the identification device. In their data set, the retirement probability changes discontinuously

at the eligibility cutoff for a pension because it provides an additional incentive to retire. Again,

our test result re-confirms the validity of FRD design in this empirical study.

In addition to the RD literature, our paper also contributes to the growing literature on

specification tests in causal inference frameworks. For example, Kitagawa (2015) and Mourifié

and Wan (2017) test the statistical independence assumption and the monotonicity assumption

in the framework of a binary instrument and a binary treatment; Sun (2020) considers models

with a discrete but multi-valued instrument and treatment. Huber and Mellace (2015) also

consider the binary IV and binary treatment framework and propose a specification test for the

mean-independence and monotonicity assumptions. Kédagni and Mourifié (2020) derive a set of

generalized inequalities from Pearl (1995) to test the IV-independence assumption with discrete

treatment with unrestricted outcomes and instruments. Acerenza, Bartalotti, and Kédagni

(2020) test identifying assumptions in bivariate Probit models. Among these works, our paper

is more relevant to and gains motivation from Huber and Mellace (2015), who also construct

testable implications based on the bounds derived in Horowitz and Manski (1995). While our

testable implications share the same spirit as those in Huber and Mellace (2015), the two papers

focus on different models. Furthermore, our testable implications are local to the cutoff instead

of global restrictions due to the feature of regression discontinuity. For this reason, our test also

differs significantly from that proposed in Huber and Mellace (2015) because smoothing for the

dimension of the running variable is required in our case.

The rest of the paper is organized as follows. We discuss the identifying assumptions and

5



derive the testable implications in Section 2. In Section 3, we describe the testing procedure

and establish the asymptotic proprieties of our test. In Section 4, we conduct several sets of

Monte Carlo experiments to show the finite sample performance of our test and report empirical

application results in Section 5. Section 6 discusses possible extensions of our test. We conclude

the paper in Section 7. All the proofs, additional simulations and empirical results are collected

in the appendix.

2 Assumptions and Testable Implications

Let (Ω,F , P ) be the probability space, where Ω is the sample space with a generic element

denoted by ω, F is the sigma-algebra, and the P is the probability distribution that generates

all the random variables. Among all the variables, D(·) : Ω → {0, 1} is the observed binary

treatment assignment, Y (·) : Ω → Y is the observed outcome of interest, and Z(·) : Ω → Z is

a continuous running variable with a known cut-off c. A given individual ω in the population

is endowed with a potential treatment function D(·, ω) : Z → {0, 1}. D(z, ω) represents the

treatment that the individual ω would have taken had his/her running variable been externally

set to z. Likewise, let Y (d, ω) be his/her potential outcome had the treatment been externally

set to d. The observed treatment and outcome are connected as D(ω) ≡ D(Z, ω) and Y (ω) ≡
D(ω)Y (1, ω) + (1−D(ω))Y (0, ω), respectively.

Based on the shape of the potential treatment function in a small neighbourhood Bϵ = {z ∈
Z : |z − c| ≤ ϵ} of the cutoff, we define compliance status T of an individual ω as:

T (ω) =



A, if D(z, ω) = 1, for z ∈ Bϵ,

N, if D(z, ω) = 0, for z ∈ Bϵ,

C, if D(z, ω) = 1{z ≥ c}, for z ∈ Bϵ,

DF, otherwise

(2.1)

where A, C, N and DF represent “always-takers”, “compliers”, “never-takers”, and “defiers”,

respectively. Hereafter, we will suppress the argument ω whenever it causes no confusion. We

make the following assumptions as in Imbens and Lemieux (2008).

Assumption 2.1 (Local monotonicity) There exists a small ϵ > 0 such that T ∈ {AAA,CCC,NNN}
almost surely.
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Assumption 2.1 requires that the potential treatment status be weakly increasing in the

running variable near the cutoff for all individuals in the population.1 It rules out defiers.

For d ∈ {0, 1} and t ∈ {A,N,C}, let fY (d)|T,Z(y|t, z) be the probability density function

of Y (d) given type T = t and Z = z (when Y (d) is discrete, these densities are understood

as probability mass function). We will focus on the cases in which limz↓c fY (d)|T,Z(y|t, z) and

limz↑c fY (d)|T,Z(y|t, z) are proper densities and the corresponding conditional expectations, de-

noted by E[Y (d)|T = t, Z = c+] and E[Y (d)|T = t, Z = c−], are finite.2

Assumption 2.2 (Local continuity in means) E[Y (d)|T = t, Z = z] and P (T = t|Z = z)

are continuous in z in the neighborhood Bϵ of c for any t ∈ {A,N,C}.

Assumption 2.2 requires the continuity of the conditional mean of potential outcomes as a

function of the running variable in the neighbourhood of the cutoff for each type of individual, as

well as for the type probabilities. This assumption is weaker than the local continuity assumption

in distributions, which is tested in Arai, Hsu, Kitagawa, Mourifié, and Wan (2022). We restate

this assumption below.

Assumption 2.3 (Local continuity in distributions) For d = 0, 1, t ∈ {A,C,N}, and an

measurable subset V ⊆ Y, we have

lim
z↑c

P (Yd ∈ V, T = t|Z = z) = lim
z↓c

P (Yd ∈ V, T = t|Z = z).

The following proposition re-states the results of Hahn, Todd, and Van der Klaauw (2001),

Frandsen, Frölich, and Melly (2012), and Arai, Hsu, Kitagawa, Mourifié, and Wan (2022).

It shows that the LATE at the cutoff is identified under the monotonicity assumption and

continuity in means assumption, and the distributional LATE is identified if the continuity in

means assumption is strengthened to continuity in distributions assumption. For the purpose of

exposition, the proof is omitted. For generic random variables (R1, R2, R3), let E[R1|R2, R3 =

c+] be the limit of a conditional mean limb↓cE[R1|, R2, R3 = b] and E[R1|R2, R3 = c−] be the

1This monotonicity assumption is equivalent to those imposed in Hahn, Todd, and Van der Klaauw (2001)
and Imbens and Lemieux (2008), and is slightly stronger than that in Arai, Hsu, Kitagawa, Mourifié, and Wan
(2022). All the versions have the same intuition and are equivalent in the limit of ϵ approaches to zero. We use
this version for its simplicity.

2It only requires the conditional density of potential outcomes to have a well-defined limit from above and
below the cutoff, respectively, but not necessarily equal to each other.

7



limit of a conditional mean limb↑cE[R1|, R2, R3 = b], whenever these quantities are properly

defined.

Proposition 2.1 Suppose Assumptions 2.1 and 2.2 are satisfied, and E[D|Z = c+] > E[D|Z =

c−], then LATE at the cutoff is identified by the fuzzy regression discontinuity estimand:

LATE ≡ E[Y (1)− Y (0)|CCC,Z = c] =
E[Y |Z = c+]− E[Y |Z = c−]
E[D|Z = c+]− E[D|Z = c−]

. (2.2)

If Assumption 2.3 holds in place of Assumption 2.2, then the complier’s potential outcome dis-

tributions at the cutoff are identified by the following quantities:

FY1|C,Z=c(y) =
E[1{Y ≤ y}D|Z = c+]− E[1{Y ≤ y}D|Z = c−]

E[D|Z = c+]− E[D|Z = c−]
, (2.3)

FY0|C,Z=c(y) =
E[1{Y ≤ y}(1−D)|Z = c+]− E[1{Y ≤ y}(1−D)|Z = c−]

E[D|Z = c+]− E[D|Z = c−]
. (2.4)

Furthermore, the sharp testable implications for Assumptions 2.1 and 2.3 are characterized

by the following set of inequality constraints:

E[g(Y )D|Z = c−]− E[g(Y )D|Z = c+] ≤ 0 (2.5)

E[g(Y )(1−D)|Z = c+]− E[g(Y )(1−D)|Z = c−] ≤ 0, (2.6)

for any g belonging to the class of close intervals: G = {g : g(Y ) = 1[y ≤ Y ≤ y′], y, y′ ∈ Y}.

The inequality constraints (2.5) and (2.6) can be interpreted as the “nonnegativity of the

potential outcome density functions for the compliers at the cutoff”. As shown in Arai, Hsu,

Kitagawa, Mourifié, and Wan (2022), if inequalities (2.5) and (2.6) are satisfied for all g ∈ G,
then we can construct a joint distribution for the potential outcomes and the running variable

which is observationally equivalent to the observed data distribution and satisfies the FRD

distributional assumptions, hence the FRD mean assumptions. However, (2.5) and (2.6) are

not necessary implications of FRD mean assumptions. That is, one can find a distribution that

satisfies FRD mean assumptions, but its implied distribution would violate inequality (2.5) or

(2.6) for a function g ∈ G. Therefore, inequalities (2.5) and (2.6) are “over aggressive” for

testing the FRD mean assumptions. A natural follow-up question is, does there exist a subclass

GV ⊆ G that is dedicated to assessing the validity of FRD mean assumptions? Unfortunately,
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the answer is negative. For a given sub-class of closed intervals GV , there always exists a DGP

that satisfies the FRD mean assumptions but violates one of the inequalities at g0 ∈ GV . This

is demonstrated in the Lemma 2.1 below.

Lemma 2.1 Let V = [y∗, y∗∗] be an arbitrary interval such that P (Yd ∈ V ) > 0 for d = 0, 1. Let

GV ⊆ G be a class of intervals that generated from V : GV = {g : g(Y ) = 1[y ≤ Y ≤ y′], y, y′ ∈ V }.
Let P0 be the set of joint distributions of {Y (0), Y (1), D(z), Z}z∈Z that satisfy Assumptions 2.1

and 2.2 and one of the following two conditions,

(a) the distribution of Y (d)|T = t, Z = z admits a positive density fY (d)|T=t,Z=z over V for

all t and z in the small neighborhood of cutoff c, or

(b) if the distribution of Y (d) is discrete, then V contains at least three elements {y1, y2, y3}
such that P (Y (d) = yk|T = t, Z = z) > 0 for all k = 1, 2, 3, all t, and all z in a small

neighborhood of cutoff c,3

then for any pre-chosen V , there exists a distribution P ∈ P0 and a function g0 ∈ GV such that

the implied distribution of (Y,D,Z) violates inequality (2.5) or (2.6) at g0.

Remark 2.1 Another temptation to proceed is to change the function class, for example, to

replace g(Y ) by Y and check whether the following inequalities hold,

E[Y D|Z = c−]− E[Y D|Z = c+] ≤ 0 (2.7)

E[Y (1−D)|Z = c+]− E[Y (1−D)|Z = c−] ≤ 0, (2.8)

This is, however, not a valid approach either. Even though the FRD distributional assumptions

are satisfied (and hence the mean assumptions), the inequalities (2.7) and (2.8) can fail to hold.

For example, simple calculation shows that the left-hand side of inequality (2.7) is E[Y (1)|AAA,Z =

c]πAAA−E[Y (1)|AAA∪CCC,Z = c]πAAA∪CCC , where πt is the size of subpopulation t at the cutoff. Although

πAAA < πAAA∪CCC , the sign of E[Y (1)|AAA,Z = c]πAAA − E[Y (1)|AAA ∪ CCC,Z = c]πAAA∪CCC can be in either

direction, depending on the relative magnitude of E[Y (1)|AAA] and E[Y (1)|CCC].

To state a proper set of testable implications for Assumptions 2.1 and 2.2, let us define some

notation. Let G1(y) = limz↓c P (Y ≤ y|D = 1, Z = z) be the conditional distribution of Y given

3In the discrete case we require that there be a least three support points because if there are only two, then
testing the mean is equivalent to testing the distribution.
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D = 1 and Z = z when z converges to c from above. Note that G1(y) = limz↓c P (Y (1) ≤
y|AAA ∪ CCC,Z = z), and is well defined under Assumption 2.2-(i). Likewise, define G0(y) =

limz↑c P (Y ≤ y|D = 0, Z = z). We let q = P1|0/P1|1 be the relative size of always-takers with

respect to the combination of always-takers and compliers, where P1|0 = P (D = 1|Z = c−) and

P1|1 = P (D = 1|Z = c+).4 Likewise, we define r = P0|1/P0|0, where P0|1 = P (D = 0|Z = c+)

and P0|0 = P (D = 0|Z = c−). Note that G1, G0, q, and r are all directly identifiable from the

data. Finally, for a generic cumulative distribution function F̃ and a τ ∈ (0, 1), let

F̃−1
L (τ) = inf{y ∈ Y : F̃ (y) ≥ τ}, F̃−1

U (τ) = sup{y ∈ Y : F̃ (y) ≤ τ}. (2.9)

When F̃ is continuous at its τ -th quantile, F̃−1
L (τ) = F̃−1

U (τ), and they all coincide with the

usual definition of the quantile functions.

Now we are ready to present the testable implications of the FRD mean assumptions. Apply-

ing the results in Horowitz and Manski (1995), we derive the bounds for E[Y (1)|T = AAA,Z = c−]

and E[Y (0)|T =NNN,Z = c+], respectively. Their identifiable estimands must satisfy the bounds

too, and form restrictions on the distribution of observed data. We summarize them in Propo-

sition 2.2.

Proposition 2.2 Suppose that Assumptions 2.1 and 2.2 are satisfied, q ∈ (0, 1), and r ∈ (0, 1),

then the following inequality constraints hold:

E[Y |D = 1, Y < G−1
1L (q), Z = c+] ≤ E[Y |D = 1, Z = c−], (2.10)

E[Y |D = 1, Z = c−] ≤ E[Y |D = 1, Y > G−1
1U (1− q), Z = c+], (2.11)

E[Y |D = 0, Y < G−1
0L (r), Z = c−] ≤ E[Y |D = 0, Z = c+], (2.12)

E[Y |D = 0, Z = c+] ≤ E[Y |D = 0, Y > G−1
0U (1− r), Z = c−]. (2.13)

When the distribution of Y given (D = 1, Z = c+) is continuous at its q-th and (1 − q)-th

quantiles, inequalties (2.10) and (2.11) are sharp. When the distribution of Y given (D =

0, Z = c−) is continuous at its r-th and (1 − r)-th quantiles, inequalties (2.12) and (2.13) are

sharp.
4If the local monotonicity condition holds with an “increasing” direction, then P1|0/P1|1 ≥ P1|1/P1|0 and thus

q = P1|0/P1|1 measures the ratio of always-takers against the combination of always-takers and compliers. If it
holds with a “decreasing” direction, then we define q = P1|1/P1|0 for this ratio. The same argument applies to
the definition for r below.
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Remark 2.2 The bounds in Proposition 2.2 are not necessarily sharp when Y is discrete; how-

ever, we can provide the formula for the sharp bounds for such cases, but at the cost of more

complicated notation. The results are given in Section 6.1. We only focus on (2.10) to (2.13)

for the following reason. In some practices, the ways we treat a particular outcome variable as

continuous or discrete are mixed. For instance, if Y is “education level by years”, then some

treat it as a continuous variable, but others might treat it as a discrete variable. Using the in-

equalities (2.10) to (2.13), we would have a unified expression regardless. And it also facilitates

the development of the asymptotic theory of our test. If deciding to treat an outcome variable as

discrete, one can always use the sharp bounds reported in Section 6.1.

Remark 2.3 From the inequalities in Proposition 2.2, we know that our test is expected to

have better power when q and r are relatively large. This is because, for example, the lower

bound in (2.10) is decreasing in q giving everything else equal. This is the case when the size

of compliers is close to one, and the size of the propensity score jump at the cutoff is large.

This feature is also shared in Arai, Hsu, Kitagawa, Mourifié, and Wan (2022) for testing the

distributional assumptions, where they show that their testable implication always holds in sharp

design (q = r = 0). For the mean test we study in this paper, when q = 0, the inequalities (2.10)

and (2.11) reduce to Y1,min ≤ Y1,max, where Y1,min and Y1,max are the lower and upper bounds

of the conditional distribution of Y |D = 1, Z = c+. This holds trivially.

Note that

E[Y |D = 1, Y < G−1
1L (q), Z = c+]− E[Y |D = 1, Z = c−] ≤ 0

⇔ E[DY 1(Y < G−1
1L (q))|Z = c+]

E[D1(Y < G−1
1L (q))|Z = c+]

− E[DY |Z = c−]
E[D|Z = c−]

≤ 0

⇔ θ1 ≡ E[DY 1(Y < G−1
1L (q))|Z = c+] · E[D|Z = c−]

− E[DY |Z = c−] · E[D1(Y < G−1
1L (q))|Z = c+] ≤ 0. (2.14)

11



Similarly, the rest of the three inequalities (2.11)-(2.13) are equivalent to

θ2 ≡ E[DY |Z = c−] · E[D1(Y > G−1
1U (1− q))|Z = c+]

− E[DY 1(Y > G−1
1U (1− q))|Z = c+] · E[D|Z = c−] ≤ 0, (2.15)

θ3 ≡ E[(1−D)Y 1(Y < G−1
0L (r))|Z = c−] · E[1−D|Z = c+]

− E[(1−D)Y |Z = c+] · E[(1−D)1(Y < G−1
0L (r))|Z = c−] ≤ 0, (2.16)

θ4 ≡ E[(1−D)Y |Z = c+] · E[(1−D)1(Y > G−1
0U (1− r))|Z = c−]

− E[(1−D)Y 1(Y > G−1
0U (1− r))|Z = c−] · E[(1−D)|Z = c+] ≤ 0. (2.17)

Therefore, we can formulate our null hypothesis H0 as

H0 : θj ≤ 0 for j = 1, 2, 3 and 4. (2.18)

3 Proposed Test

3.1 Estimation of θj’s

We first consider the estimation of θj for j = 1, . . . , 4 and derive the asymptotics of corresponding

estimators before proposing a test for H0 defined in (2.18).

Let K(·) be a kernel function and h a bandwidth. For a general random variable A, let

Ê[A|Z = c+] and Ê[A|Z = c−] be the local linear estimators for E[A|Z = c+] and E[A|Z = c−],

respectively. To be specific,

(Ê[A|Z = c+], b̂+) = argmin
a,b

n∑
i=1

1(Zi ≥ c) ·K
(
Zi − c

h

)[
Ai − a− b · (Zi − c)

]2
,

(Ê[A|Z = c−], b̂−) = argmin
a,b

n∑
i=1

1(Zi < c) ·K
(
Zi − c

h

)[
Ai − a− b · (Zi − c)

]2
.

We consider multi-step estimators for θj ’s. Let G1(y) = E[1(Y ≤ y)|D = 1, Z = c+] =

E[D1(Y ≤ y)|Z = c+]/E[D|Z = c+] and G0(y) = E[1(Y ≤ y)|D = 0, Z = c−] = E[(1 −
D)1(Y ≤ y)|Z = c−]/E[1−D|Z = c−] be estimated by

Ĝ1(y) =
Ê[D1(Y ≤ y)|Z = c+]

Ê[D|Z = c+]
, Ĝ0(y) =

Ê[(1−D)1(Y ≤ y)|Z = c−]

Ê[1−D|Z = c−]
.
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Let q = P1|0/P1|1 = E[D|Z = c−]/E[D|Z = c+] and r = P0|1/P0|0 = E[1 − D|Z = c+]/E[1 −
D|Z = c−] be estimated by

q̂ =
Ê[D|Z = c−]

Ê[D|Z = c+]
, r̂ =

Ê[1−D|Z = c+]

Ê[1−D|Z = c−]
.

Let G−1
1L (q), G

−1
1U (1− q), G−1

0L (r), G
−1
0U (1− r) be estimated by

Ĝ−1
1L (q̂) = inf{y ∈ Y : Ĝ1(y) ≥ q̂}, Ĝ−1

1U (1− q̂) = sup{y ∈ Y : Ĝ1(y) ≤ 1− q̂},

Ĝ−1
0L (r̂) = inf{y ∈ Y : Ĝ0(y) ≥ r̂}, Ĝ−1

0U (1− r̂) = sup{y ∈ Y : Ĝ0(y) ≤ 1− r̂}.

Then θ1, θ2, θ3 and θ4 are estimated by

θ̂1 = Ê[DY 1(Y < Ĝ−1
1L (q̂))|Z = c+] · Ê[D|Z = c−]

− Ê[DY |Z = c−] · Ê[D1(Y < Ĝ−1
1L (q̂))|Z = c+],

θ̂2 = Ê[DY |Z = c−] · Ê[D1(Y > Ĝ−1
1U (1− q̂))|Z = c+]

− Ê[DY 1(Y > Ĝ−1
1U (1− q̂))|Z = c+] · Ê[D|Z = c−],

θ̂3 = Ê[(1−D)Y 1(Y < Ĝ−1
0L (r̂))|Z = c−] · Ê[1−D|Z = c+]

− Ê[(1−D)Y |Z = c+] · Ê[(1−D)1(Y < Ĝ−1
0L (r̂))|Z = c−],

θ̂4 = Ê[(1−D)Y |Z = c+] · Ê[(1−D)1(Y > Ĝ−1
0U (1− r̂))|Z = c−]

− Ê[(1−D)Y 1(Y > Ĝ−1
0U (1− r̂))|Z = c−] · Ê[(1−D)|Z = c+].

In the appendix, under suitable regularity conditions, we derive the asymptotic linear rep-

resentations of the estimators
√
nh(θ̂ − θ) that take into account the estimation effects of the

estimated nuisance parameters where θ = (θ1, θ2, θ3, θ4)
′, θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4)

′. We also show the

joint asymptotic normality of the estimators in that
√
nh(θ̂ − θ)

d→ N (0,Ω) and Ω is a 4 × 4

asymptotic covariance matrix.

3.2 Weighted Bootstrap

The analytical variance estimator of the proposed estimators could be tedious to calculate. As

in Hsu and Shen (2022), we propose to use a weighted bootstrap procedure first introduced in

Ma and Kosorok (2005) to simulate the limiting distribution of the proposed estimators.
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Let {Wi}ni=1 be a sequence of pseudo-random variables that is independent of the sample path

with both mean and variance equal to one. For a generic random variable A, let Êw[A|Z = c+]

and Êw[A|Z = c−] be the weighted bootstrap local linear estimators for E[A|Z = c+] and

E[A|Z = c−], respectively. To be specific,

(Êw[A|Z = c+], b̂w+) = argmin
a,b

n∑
i=1

Wi · 1(Zi ≥ c) ·K
(
Zi − c

h

)[
Ai − a− b · (Zi − c)

]2
,

(Êw[A|Z = c−], b̂w−) = argmin
a,b

n∑
i=1

Wi · 1(Zi < c) ·K
(
Zi − c

h

)[
Ai − a− b · (Zi − c)

]2
.

Let the weighted bootstrap estimators for G1(y) and G0(y) be

Ĝw
1 (y) =

Êw[D1(Y ≤ y)|Z = c+]

Êw[D|Z = c+]
, Ĝw

0 (y) =
Êw[(1−D)1(Y ≤ y)|Z = c−]

Êw[1−D|Z = c+]
.

Let the weighted bootstrap estimators for q and r be

q̂w =
Êw[D|Z = c−]

Êw[D|Z = c+]
, r̂w =

Êw[1−D|Z = c+]

Êw[1−D|Z = c−]
.

Let the weighted bootstrap estimators for G−1
1L (q), G

−1
1U (1− q), G−1

0L (r), G
−1
0U (1− r) be

Ĝ−1,w
1L (q̂) = inf{y ∈ Y : Ĝw

1 (y) ≥ q̂w}, Ĝ−1,w
1U (1− q̂) = sup{y ∈ Y : Ĝw

1 (y) ≤ 1− q̂w},

Ĝ−1,w
0L (r̂) = inf{y ∈ Y : Ĝw

0 (y) ≥ r̂w}, Ĝ−1,w
0U (1− r̂) = sup{y ∈ Y : Ĝw

0 (y) ≤ 1− r̂w}.

Then the weighted bootstrap estimators for θ1, θ2, θ3 and θ4 are

θ̂w1 = Êw[DY 1(Y < Ĝ−1
1L (q̂

w))|Z = c+] · Êw[D|Z = c−]

− Êw[DY |Z = c−] · Êw[D1(Y < Ĝ−1,w
1L (q̂w))|Z = c+],

θ̂w2 = Êw[DY |Z = c−] · Êw[D1(Y > Ĝ−1,w
1U (1− q̂w))|Z = c+]

− Êw[DY 1(Y > Ĝ−1,w
1U (1− q̂w))|Z = c+] · Êw[D|Z = c−],

θ̂w3 = Êw[(1−D)Y 1(Y < Ĝ−1,w
0L (r̂w))|Z = c−] · Êw[1−D|Z = c+]

− Êw[(1−D)Y |Z = c+] · Êw[(1−D)1(Y < Ĝ−1,w
0L (r̂w))|Z = c−],

θ̂w4 = Êw[(1−D)Y |Z = c+] · Êw[(1−D)1(Y > Ĝ−1,w
0U (1− r̂w))|Z = c−]
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− Êw[(1−D)Y 1(Y > Ĝ−1,w
0U (1− r̂w))|Z = c−] · Êw[(1−D)|Z = c+].

Under the same set of regularity conditions (see details in Appendix B), we can derive the

asymptotic linear representation of the weighted bootstrap estimators
√
nh(θ̂w − θ̂) and show

that Φ̂w =
√
nh(θ̂w − θ̂) converges to the same limiting distribution as

√
nh(θ̂ − θ) conditional

on the same path with probability approaching one. That is, Φ̂ can approximate the limiting

distribution of
√
nh(θ̂ − θ) well.

3.3 Test statistics and the decision rule

We define the test statistic as

T̂n =
√
nh max

j=1,...,4

θ̂j
σ̂j

, (3.1)

where σ̂2
j is a consistent estimator for σ2

j , the asymptotic variance of
√
nh(θ̂j − θj) for j ∈

{1, 2, 3, 4}. For σ̂2
j , we suggest using the weighted bootstrap estimators. To be specific, let

b = 1, . . . , B and sayB = 1000. Then for each b, we get θ̂w,b and let σ̂2
j = nhB−1

∑B
b=1(θ̂

w,b
j −θ̂j)

2.

Define µ̂j = θ̂j1(
√
nhθ̂j ≤ −anσ̂j) where an is sequence of positive numbers such that

limn→∞ an = ∞ and limn→∞ an
√
n−1h−1 = 0. For significance level α < 1/2, define the critical

value as ĉn(α) = max{c̃n(α), 0} where c̃n(α) is defined as

c̃n(α) = inf
c

{
c : P

(
max

j=1,...,4

{ ϕ̂w
j +

√
nhµ̂j

σ̂j

}
≤ c

)
≥ 1− α

}
.

The decision rule will be “Reject H0 if T̂n > ĉn(α).”

Proposition 3.3 Suppose that Assumptions B.1 to B.7 in Appendix B hold and let 0 < α < 1/2.

Then under H0 in (??), limn→∞ P (T̂n > ĉn(α)) ≤ α; under H1, limn→∞ P (T̂n > ĉn(α)) = 1.

For implementation of our test, one can set Wi as normal distributions with mean and

variance both equal to 1, but we suggest setting Wi as a binary variable taking values on 0 and

2 with equal probability, so all the realized weights Wi will be non-negative. We also suggest

setting an = 0.1
√
log logn as in Donald and Hsu (2016) or an =

√
0.3 log n as in Andrews and

Shi (2013).
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4 Simulation

In this section, we consider a few numerical examples to illustrate the performance of our

procedure. For comparison purpose, our first set of DGPs are the same as the power designs in

Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), which we listed below:

DGP1 Let Z ∼ N(0, 1) truncated at −2 and 2. The propensity score is given by

P (D = 1|Z = z) = 1{−2 ≤ z < 0}max{0, (z + 2)2/8− 0.01}

+ 1{0 ≤ z ≤ 2}min{1, 1− (z − 2)2/8 + 0.01}

Let Y |(D = 0, Z = z) ∼ N(0, 1) for all z ∈ [−2, 2], and Y |(D = 1, Z = z) ∼ N(0, 1) for all

z ∈ [0, 2]. Let Y |(D = 1, Z = z) ∼ N(−0.7, 1) for all z ∈ [−2, 0).

DGP2 Same as DGP1 except that Y |(D = 1, Z = z) ∼ N(0, 1.6752) for all z ∈ [−2, 0).

DGP3 Same as DGP1 except that Y |(D = 1, Z = z) ∼ N(0, 0.5152) for all z ∈ [−2, 0).

DGP4 Same as DGP1 except that Y |(D = 1, Z = z) ∼ ∑5
j=1 ωjN(µj , 0.125

2) for all z ∈ [−2, 0),

where ω = (0.15, 0.2, 0.3, 0.2, 0.15) and µ = (−1,−0.5, 0, 0.5, 1).

Note that all four DGPs violate the null hypothesis in Arai, Hsu, Kitagawa, Mourifié, and Wan

(2022) because the conditional distributions of the potential outcome are not continuous near

the cutoff. DGP1 has a location shift, so it violates the FRD mean assumption and therefore

violates our null hypothesis. On the other hand, DGP2, DGP3, and DGP4 satisfy our null

hypothesis. In DGP2 and DGP3, only the conditional variance changes but not the conditional

expectation. For DGP4, while the shape of the distribution changes from normal to a mixture

of normals, the conditional expectation is still zero on both sides of the cutoff.

For all the designs, we consider five sample sizes n ∈ {500, 1000, 2000, 4000, 8000}, 1000

bootstrap draws, 800 replications, and three significance levels α ∈ {1%, 5%, 10%}. We set

an = 0.1
√
log log n following Donald and Hsu (2016). For the bandwidth, we consider three

data-driven choices of bandwidths: Imbens and Kalyanaraman (2012, IK), Calonico, Cattaneo,

and Titiunik (2014, CCT) and Arai and Ichimura (2016, AI). To deal with the bias in the local

regression, we consider undersmoothing (US) by multiplying each bandwidth by n
1
5
− 1

c with

c = 4.5. We also consider MSE-optimal robust bias correction (MSE-RBC) implementation (see
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Calonico, Cattaneo, and Farrell, 2018) and the rule-of-thumb coverage error rate (CER-RBC)

optimal implementation (see Calonico, Cattaneo, and Farrell, 2020).

Table 1 reports the results for α = 5%. Full sets of results for other significance levels are

collected in Tables 7 and 8 of Appendix C and give the same results qualitatively. The first panel

(DGP1) is the power design, where the local continuity in means assumption is violated. We

can see the rejection rate is low when the sample size is small (n = 500), which is not surprising

because there are fewer observations near the cutoff to provide screening power. However, the

rejection rate increases as the sample size increases for all choices of bandwidths.

Panels 2-4 of Table 1 are size designs in which both Assumptions 2.1 and 2.2 are satisfied.

For these designs, all the rejection rates are below the nominal level of 5% for all sample sizes,

suggesting that the size is well controlled. As the sample size increases, the rejection rates get

closer to the nominal rate. Overall, the MSE-RBC and CER-RBC implementation work slightly

better than undersmoothing, although they are not designed for model specification tests. On

the other hand, Arai, Hsu, Kitagawa, Mourifié, and Wan (2022, Table 2) rejects DGP2-4 because

either the variance or the shape of the potential outcome distribution is not continuous near the

cutoff.

We also conduct another set of experiments to examine how the rejection rate varies with

the “magnitude” of violation.

DGP5 The same as DGP1 except that Y |(D = 1, Z = z) ∼ N(−d, 1) for z ∈ [−2, 0), where

d ∈ {0.1, 0.2, · · · , 1.0}.

Figure 1 plots the rejection rate of using IK-US bandwidth at different values of d and sample

size n. The results of using other bandwidths are similar. When d = 0, the local continuity

in the mean condition is satisfied, and we would expect the rejection rate to be no larger than

the nominal rate. As d increases, the magnitude of violation is larger, and we expect to see the

rejection rate increase. This is confirmed by Figure 1.

Finally, we consider DGP6, where we allow the jump size π of the propensity score to change.

DGP6 The same as DGP1 except that

P (D = 1|Z = z) = 1{−2 ≤ z < 0}max
{
0, (z + 2)2/8− π

2

}
+ 1{0 ≤ z ≤ 2}min

{
1, 1− (z − 2)2/8 +

π

2

}
.
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Table 1: Rejection Rate at 5% Level

Undersmoothing MSE-RBC CER-RBC
n IK CCT AI IK CCT AI IK CCT AI

500 0.125 0.071 0.179 0.039 0.005 0.089 0.081 0.044 0.184
DGP1 1000 0.371 0.275 0.340 0.198 0.080 0.221 0.310 0.210 0.344
(Power) 2000 0.558 0.506 0.564 0.414 0.288 0.424 0.510 0.443 0.565

4000 0.800 0.679 0.824 0.665 0.511 0.660 0.745 0.628 0.823
8000 0.970 0.916 0.964 0.893 0.763 0.868 0.940 0.871 0.965

500 0.013 0.009 0.028 0.003 0.001 0.018 0.011 0.004 0.021
DGP2 1000 0.054 0.024 0.020 0.026 0.005 0.035 0.043 0.021 0.019
(Size) 2000 0.043 0.044 0.035 0.031 0.030 0.059 0.041 0.039 0.038

4000 0.035 0.049 0.016 0.044 0.038 0.033 0.035 0.048 0.015
8000 0.035 0.039 0.033 0.051 0.048 0.046 0.048 0.045 0.033

500 0.010 0.009 0.018 0.005 0.001 0.028 0.008 0.003 0.018
DGP3 1000 0.036 0.018 0.028 0.011 0.010 0.050 0.028 0.011 0.026
(Size) 2000 0.043 0.030 0.021 0.026 0.024 0.044 0.034 0.030 0.023

4000 0.026 0.034 0.035 0.033 0.025 0.055 0.033 0.041 0.040
8000 0.034 0.041 0.025 0.045 0.040 0.043 0.041 0.035 0.024

500 0.013 0.010 0.019 0.004 0.000 0.031 0.010 0.009 0.014
DGP4 1000 0.038 0.013 0.026 0.019 0.008 0.048 0.029 0.013 0.030
(Size) 2000 0.040 0.045 0.031 0.039 0.028 0.055 0.040 0.044 0.030

4000 0.049 0.029 0.029 0.040 0.041 0.051 0.053 0.033 0.038
8000 0.021 0.041 0.031 0.030 0.033 0.045 0.029 0.035 0.033

Here, π ∈ {0, 0.05, 0.1, 0.15, · · · , 0.6} and Y |(D = 1, Z = z) ∼ N(−d, 1) for z ∈ [−2, 0) for

d ∈ {0.7, 1.0, 1.5}. As we discussed earlier in Remark 2.3, when π increases, q (or r) will

decrease (given everything else equal). Therefore, the bounds in Proposition 2.2 will be wider

and thus we will expect a lower rejection rate. Figure 2 verifies this point for bandwidth IK-

US and sample size n = 8000. Again, the results for other sample sizes and bandwidths are

qualitatively similar.

5 Empirical Application

In this section, we illustrate the use of our method in a few empirical applications.5

5We thank the authors of Miller, Pinto, and Vera-Hernández (2013), Angrist and Lavy (1999), Pop-Eleches
and Urquiola (2013), and Battistin, Brugiavini, Rettore, and Weber (2009) for sharing the data or making the
data publicly available on journal websites. All errors in the empirical illustration are ours.
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Figure 1: Rejection Rate at 5%, IK-US Bandwdith (DGP5)
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Figure 2: Rejection Rate at 5%, IK-US Bandwdith (DGP6)
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5.1 Effect of Enrolling in a Subsidized Insurance Program

We first access the validity of Assumptions 2.1 and 2.2 in the empirical context studied by

Miller, Pinto, and Vera-Hernández (2013), who use the FRD design to identify the causal effect

of enrolling in a publicly funded insurance program (Subsidized Regime, SR) on many household-

level outcome variables in Columbia. In Columbia, a household is eligible to enroll in SR if their

SISBEN score (Sistema de Identificación de Beneficiarios, a continuous index taking values from

0 to 100, with 0 being the poorest) is below a cutoff. The SISBEN score thus serves as the

running variable. In their empirical implementation, Miller, Pinto, and Vera-Hernández (2013)

use a simulated SISBEN score to alleviate the threat of possible manipulation on the score, and

the resulting density passes the density test and appears to be continuous at the cutoff.

Motivated by the observation that the continuity of running variable density is neither suffi-

cient nor necessary to identify the local average treatment effect (LATE), Arai, Hsu, Kitagawa,

Mourifié, and Wan (2022) test the set of (distributional) identifying assumptions for LATE-

type parameters. They found that the FRD distributional assumptions are rejected for three

dependent variables: ”household educational spending”, ”total spending on food”, and ”total

monthly expenditure”. In this application, the monotonicity assumption appears to be rea-

sonable. Therefore, the rejection can be interpreted as the discontinuity of the conditional

distribution of potential outcomes of these three dependent variables given the running variable

(SISBEN score) near the cutoff. One needs to be careful when making inference on parameters

that requires distributional identification assumptions, such as quantile treatment effect. How-

ever, discontinuity in the conditional distribution does not necessarily imply a discontinuity in

the conditional expectation. If the local continuity in means (Assumption 2.2) holds, we can

still credibly identify the mean effect.

Table 2 reports the p-values of our test on the three dependent variables under different band-

width choices (including the three fixed bandwidths used in Miller, Pinto, and Vera-Hernández,

2013). The bandwidth values are reported in Table 9 in Appendix C. We observe no rejection

across the board even at the 10% level. While our test is designed for the necessary implications

of the local continuity in means assumptions and local monotonicity instead of their sufficient

conditions, the results in Table 2 do suggest that the violation of continuity in distributions is

more likely caused by discontinuity of higher moments (such as variance) or tail shapes.
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Table 2: Testing Results for Columbia’s SR Data: p-values

Bandwidth Household edu.exp. Total exp.on food Total monthly exp.

2 0.591 0.613 0.605
3 0.522 0.550 0.717
4 0.582 0.535 0.865
IK-US 0.608 0.506 0.688
IK-MSE-RBC 0.594 0.539 0.662
IK-CER-RBC 0.521 0.564 0.620
CCT-US 0.539 0.513 0.737
CCT-MSE-RBC 0.616 0.573 0.659
CCT-CER-RBC 0.520 0.524 0.686
AI-US 0.770 0.500 0.734
AI-MSE-RBC 0.831 0.720 0.642
AI-CER-RBC 0.653 0.591 0.751

5.2 Effect of Class Size

Our second empirical application is the one studied by Angrist and Lavy (1999) and Angrist,

Lavy, Leder-Luis, and Shany (2019), where Israel’s Maimonides’ rule creates an FRD design and

can be used to identify the effect of class size on students’ performance. Maimonides’ rule in

Israel’s public school system requires that the class size be no larger than 40 students. Whenever

the enrollment exceeds 40, the school must offer at least two classes. Under this policy, therefore,

the average class size of a grade as a function of enrollment is discontinuous at the multiples

of the upper limit (40, 80, 120 etc.). In practice, some schools choose smaller class sizes than

40. This creates an FRD design because the probability of dividing classes is larger than zero

before reaching the cutoff. In a seminal paper, Angrist and Lavy (1999) use this FRD design to

identify the causal effect of class size on students’ performance.

There are concerns about the validity of the identification strategy due to possible manipula-

tion of the enrollment (running variable). For example, Otsu, Xu, and Matsushita (2013) found

that the enrollment density is not continuous at some of the cutoffs. However, as discussed in

Angrist, Lavy, Leder-Luis, and Shany (2019), the discontinuity of running variable density is

likely caused by schools’ budgetary consideration and is independent of students’ potential per-

formance, and therefore need not violate the identifying assumptions for the LATE parameters.

This discussion is supported by Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), who test the
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(distributional) identifying assumptions for four dependent variables (grade 4 and 5’s math and

vocabulary) and did not find evidence for rejection.

Table 3: Testing Results for Israeli School Data (Grade 4): p-values

g4math g4verb
Bandwidth 40 80 120 40 80 120

3 0.814 0.614 1.000 0.569 0.38 0.787
5 0.979 0.638 0.988 0.44 0.842 0.963
IK-US 0.996 0.93 0.988 0.419 0.897 0.668
IK-MSE-RBC 0.611 0.551 0.978 0.416 0.53 0.956
IK-CER-RBC 0.982 0.822 0.942 0.481 0.907 0.971
CCT-US 0.997 0.829 0.973 0.786 0.891 0.853
CCT-MSE-RBC 0.981 0.879 0.544 0.462 0.895 0.932
CCT-CER-RBC 0.998 0.902 0.985 0.584 0.905 0.861
AI-US 1.000 0.79 0.901 0.438 0.823 0.715
AI-MSE-RBC 0.979 0.884 0.958 0.38 0.825 0.938
AI-CER-RBC 0.997 0.803 0.899 0.468 0.814 0.859

Table 4: Testing Results for Israeli School Data (Grade 5): p-values

g5math g5verb
Bandwidth 40 80 120 40 80 120

3 0.8.00 0.482 0.656 0.734 0.545 0.601
5 0.854 0.344 0.603 0.845 0.470 0.359
IK-US 0.617 0.614 0.888 0.653 0.821 0.811
IK-MSE-RBC 0.959 0.469 0.369 0.791 0.452 0.315
IK-CER-RBC 0.742 0.464 0.620 0.687 0.713 0.735
CCT-US 0.790 0.902 0.501 0.620 0.687 0.790
CCT-MSE-RBC 0.902 0.415 0.394 0.996 0.763 0.240
CCT-CER-RBC 0.869 0.766 0.737 0.760 0.686 0.741
AI-US 0.533 0.865 0.865 0.649 0.472 0.883
AI-MSE-RBC 0.631 0.819 0.933 0.956 0.818 0.905
AI-CER-RBC 0.479 0.917 0.974 0.739 0.466 0.927

In this subsection, we revisit this empirical question. Since the distributional test does

not reject the continuity of conditional distributions, we expect our test on the continuity of

conditional expectations will conclude with no rejection either. It is indeed the case. As reported

in Tables 3 and 4 (bandwidth values reported in Tables 10 and 11), the p-values for the cutoff

40 are greater than 5% for all bandwidths choices and all four dependent variables, and they
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are greater than 10% for nearly all combinations.

5.3 Effect of Attending Better Schools

Estimating the effect of school quality on student performance is one of the most important

research questions in labour/education economics. The difficulty lies in that students are het-

erogeneous in their ability and how much they can benefit from a higher-achievement school,

and they are not randomly allocated to different schools. Pop-Eleches and Urquiola (2013) apply

the FRD design to Romanian secondary school data and find that students who enroll in better

schools tend to perform better in the Baccalaureate exams, among other findings.

In Romania, students’ chances of enrolling in higher-ranked schools solely depend on a per-

formance measure in schools, which depends on their nationwide test outcome and their GPA.

The centralized allocation process satisfies the needs of students with higher scores first, thus

creating cutoff scores at which the enrollment probability (in better schools) changes discontin-

uously. Please see Pop-Eleches and Urquiola (2013) for detailed institutional background. If the

students who are just above the cutoff on average benefit from the higher-achievement school

the same way as those who are just below the cutoff, such jumps in enrollment probability can

provide identification power for the causal effect near the cutoff.

In our empirical illustration, the outcome variable is the continuous Baccalaureate exam

score. The running variable is the transition score, and the treatment variable is if a student

enrolls in a ”better school.” Here we consider two cutoffs: enrolling in the best school in town

or avoiding the worst school in town. The validity of an FRD design using test scores as a

cutoff is not self-ensured and depends on specific empirical contexts. For example, if a school

teacher has a targeted group of students that he/she always prefers to put on the treatment (or

on the right-hand side of the cutoff), then the teacher may manipulate the cutoff to guarantee

this. If this group of students is different from other students in an unobserved way, then the

local continuity condition can be violated. See discussions about running variable manipulation

in Gerard, Rokkanen, and Rothe (2020), too. The FRD design using the Romanian secondary

school transition test, however, is likely to be valid since the test is at the national level and the

cutoffs are quite difficult to manipulate.

The testing results are reported in Table 5, with bandwidth values reported in Table 12

of Appendix C. We see that the validity of Assumptions 2.1 and 2.2 are not rejected at 10%
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throughout different choices of bandwidths. As a comparison, we also conduct the distributional

test of Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), and obtain the same result qualitatively.6

Table 5: Testing Results for Romania High School Data: p-values

Attending best school Avoiding worst school
Bandwidth Mean Test Distr. Test Mean Test Distr. Test

0.100 0.904 0.900 0.625 0.271
0.200 0.377 0.999 0.818 0.838
0.300 0.278 1.000 0.879 0.967
IK-US 0.467 0.635 0.719 0.815
IK-MSE-RBC 0.545 0.588 0.748 0.786
IK-CER-RBC 0.445 0.590 0.754 0.848
CCT-US 0.450 0.561 0.689 0.666
CCT-MSE-RBC 0.505 0.871 0.356 0.514
CCT-CER-RBC 0.475 1.000 0.593 0.350
AI-US 0.469 0.670 0.785 0.100
AI-MSE-RBC 0.533 0.553 0.787 0.213
AI-CER-RBC 0.443 0.570 0.793 0.199

5.4 Effect of Retirement on Consumption

As population aging accelerates in developed countries, there is an increasing number of studies

on the impact of retirement on personal physical health, psychological health, cognitive com-

petence, and family income and consumption. The key issue for identifying the causal effect is

the endogeneity of the retirement decision. One common solution is using RD designs based

on retirement-related policies or incentives. For example, many countries implement ”official

retirement ages,” and such legislation provides exogenous variations for retirement decisions;

see Müller and Shaikh (2018) for a summary of OECD country retirement ages.

Our empirical illustration uses the data from Battistin, Brugiavini, Rettore, and Weber

(2009), which identify the effect of Italy seniors’ retirement on consumption drop. The idea is

that becoming eligible for a pension provides an additional incentive for retirement; thus, as

empirically observed, the retirement probability changes discontinuously at the eligibility cutoff.

Suppose the seniors who are marginally younger than the cutoff age are comparable to those

who are marginally older in their average potential consumption behavior. In that case, such

6Pop-Eleches and Urquiola (2013) reports that McCrary (2008)’s density test does not reject the continuity of
the running variable density at the cutoffs; we do not repeat the test here.
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an FRD design can identify the causal effect of retirement on consumption.

In our implementation, we follow Battistin, Brugiavini, Rettore, and Weber (2009) and

choose the running variable as the difference between the ”family head’s” age and the eligibility

age. The treatment variable is retirement. We consider three outcome variables. They are

log values of total expenditure, total non-durable goods consumption, and food consumption.

Because the running variable is discrete (age by year), we do not implement data-dependent

bandwidths choices. Instead, we consider a wide range of choices from 3 to 10. The test does

not reject Assumptions 2.1 and 2.2 for all three outcome variables across all bandwidth choices

at 10%: the p-values are quite high. We observe nearly no rejection for the distributional test at

10% either (except that the p-value for food consumption is around 10% when the bandwidth

is small, but they are all above 5%). Overall, we do not see strong evidence against the validity

of the FRD design (either for the mean assumptions or for distributional assumptions).

Table 6: Testing Results for Italian Retirement Consumption Data: p-values

Mean Test Distribution Test
Bandwidth Total Exp Non Durable Food Total Exp Non Durable Food

3 0.555 0.613 0.241 0.709 0.831 0.121
4 0.847 0.812 0.696 0.941 0.883 0.087
5 0.913 0.845 0.500 0.970 0.940 0.106
6 0.758 0.857 0.579 0.998 0.491 0.067
7 0.727 0.939 0.486 0.990 0.382 0.358
8 0.857 0.873 0.468 0.911 0.495 0.884
9 0.739 0.671 0.488 0.904 0.875 0.988
10 0.777 0.676 0.527 0.731 0.795 0.985

6 Extensions and Discussions

6.1 Sharp bounds when Y is not continuous

The bounds reported in Proposition 2.2 are not necessarily sharp when Y is discrete. When the

support of Y contains a large number of points, it is not unreasonable to treat it as continuous.

For example, the exam score, although it only takes integer values, is often treated as continuous.

In such cases, one can just apply our result in Proposition 2.2. Alternatively, one can also derive

the sharp bounds in a similar way, as shown in the following corollary. The proof is collected in
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the proof of Proposition 2.2 and omitted.

Corollary 6.1 Suppose the conditions for Proposition 2.2 are satisfied. Suppose Y (d), d ∈
{0, 1}, are discrete and takes value from a countable set Y = {y1, y2, · · · , yJ}, where yj < yj+1

for any 1 ≤ j < J . Then the bounds in Proposition 2.2 can be tightened to

LB+ ≤ E[Y |D = 1, Z = c−] ≤ UB+, (6.1)

LB− ≤ E[Y |D = 0, Z = c+] ≤ UB−. (6.2)

where

LB+ ≡
j∗∑
j=1

yj
P (Y = yj |D = 1, Z = c+)

q
+ yj∗+1

{
1−

∑j∗

j=1 P (Y = yj |D = 1, Z = c+)

q

}
,

UB+ ≡
J∑

j=j†

yj
P (Y = yj |D = 1, Z = c+)

q
+ yj†−1

{
1−

∑J
j=j† P (Y = yj |D = 1, Z = c+)

q

}
,

LB− ≡
j∗∑
j=1

yj
P (Y = yj |D = 0, Z = c−)

r
+ yj∗+1

{
1−

∑j∗

j=1 P (Y = yj |D = 1, Z = c−)

r

}
,

UB− ≡
J∑

j=j†

yj
P (Y = yj |D = 0, Z = c−)

q
+ yj†−1

{
1−

∑J
j=j† P (Y = yj |D = 0, Z = c−)

r

}
,

and the definitions for j∗ and j† are given in Equation (A.4) and Equation (A.7).

Example 6.1 Consider the lower bound for always-takers’ expectation in the special case of a

binary outcome variable: Y ∈ {y1, y2}. In this case, the bounds in the statement of Proposi-

tion 2.2 will be trivial because inequalities 2.10 and 2.11 would simply imply:

y1 ≤ E[Y |D = 1, Z = c−] ≤ y2.

However, the bounds derived on the left-hand sides of Equations (A.6) and (A.8) still have

empirical content. To see this, if P (Y = y1|Z = c+) > qP (D = 1|Z = c+), then j∗ = 0.

This is the case where (conditioning on Z = c+) the total size of always-takers is smaller than

the size of the subpopulation for which Y = yj. The smallest possible value of E[Y |AAA,Z = c+]

would be generated by the distribution such that all the always-takers are concentrated on the
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subpopulation of Y = y1, which is just y1 by Equation (A.6). On the other hand, if P (Y =

y1|Z = c+) ≤ qP (D = 1|Z = c+), then j∗ = 1 and there are more always-takers than the size of

the subpopulation Y = y1. Hence, the smallest value of E[Y |AAA,Z = c+] would be generated by

the distribution where we allocate always-takers first to the cell Y = y1, and then the rest to the

cell Y = y2, and it gives bound as

y1
P (Y = y1|D = 1, Z = c+)

q
+ y2

(
1− P (Y = y1|D = 1, Z = c+)

q

)
.

To summarize, in the binary outcome case, when P (Y = y1|Z = c+) ≤ qP (D = 1|Z = c+), the

lower bound of E[Y |D = 1, Z = c−] has empirical content and equals

y1
P (Y = y1|D = 1, Z = c+)

q
+ y2

(
1− P (Y = y1|D = 1, Z = c+)

q

)
.

6.2 Including covariates X

Our testable implication can be extended if the local monotonicity and local continuity in means

assumptions hold when conditioning on covariates X. In particular, consider:

Assumption 6.1 (Conditional local monotonicity) limz↓c P (T = DF|Z = z,X = x) = 0

and limz↑c P (T = DF|Z = z,X = x) = 0 for all x ∈ X .

Let fd(y|t, z, x) be the conditioning density of Y (d) given T = t, Z = z, and X = x.

Assumption 6.2 (Conditional local continuity in means) For all x ∈ X , assume that (i)

limz↓c fd(y|t, z, x) and limz↑c fd(y|t, z, x) are proper densities and bounded away from zero for

all y ∈ Y; (ii) E[Y (d)|T = t, Z = z,X = x] exists and is continuous in z in the neighborhood

Bϵ of c; (iii) P (T = t|Z = z,X = x) is continuous in z in the neighborhood Bϵ of c for any

t ∈ {A,N,C}.

LetG1x(y) = limz↓c P (Y ≤ y|D = 1, Z = z,X = x) be the conditional distribution of Y given

D = 1, Z = z, X = x when z converges to c from above. Similarly, define G0x(y) = limz↑c P (Y ≤
y|D = 0, Z = z). We let qx = P1|0(x)/P1|1(x) where P1|0(x) = P (D = 1|Z = c−, X = x) and

P1|1(x) = P (D = 1|Z = c+, X = x). Likewise, we define rx = P0|1(x)/P0|0(x). Again, G1x, G0x,

qx, and rx are all directly identifiable from the data. Then we have the following results.
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Corollary 6.2 Suppose that Assumptions 6.1 and 6.2 are satisfied, and suppose for all x ∈ X ,

qx ∈ (0, 1), and rx ∈ (0, 1), then the following inequality constraints hold:

E[Y |D = 1, Y < G−1
1xL(qx), Z = c+, X = x] ≤ E[Y |D = 1, Z = c−, X = x], (6.3)

E[Y |D = 1, Z = c−, X = x] ≤ E[Y |D = 1, Y > G−1
1xU (1− qx), Z = c+, X = x], (6.4)

E[Y |D = 0, Y < G−1
0xL(rx), Z = c−, X = x] ≤ E[Y |D = 0, Z = c+, X = x], (6.5)

E[Y |D = 0, Z = c+, X = x] ≤ E[Y |D = 0, Y > G−1
0xU (1− rx), Z = c−, X = x]. (6.6)

To implement the testable implication, we can transform these inequalities as in Section 2.

Take Corollary 6.2 as an example. It implies that

E[Y |D = 1, Y < G−1
1L (q), Z = c+, X = x]− E[Y |D = 1, Z = c−, X = x] ≤ 0

⇔ E[DY 1(Y < G−1
1L (q))|Z = c+, X = x]

E[D1(Y < G−1
1L (q))|Z = c+, X = x]

− E[DY |Z = c−, X = x]

E[D|Z = c−, X = x]
≤ 0

⇔ θ1(x) ≡ E[DY 1(Y < G−1
1L (q))|Z = c+, X = x] · E[D|Z = c−, X = x]

− E[DY |Z = c−, X = x] · E[D1(Y < G−1
1L (q))|Z = c+, X = x] ≤ 0. (6.7)

Similarly calculating θj(x) for j = 2, 3, 4, we can then transform the null hypothesis as

H0 : sup
x∈X ,j∈{1,2,3,4}

θj(x) ≤ 0.

When X is discrete, our testing procedure in Section 3 can be easily extended by implement-

ing the test on each subsample defined by the value of covariates. When X is continuous, it is

possible to extend our results to this case by restricting x’s to a compact subset of interior points

of X , but it is more technically challenging. Therefore, we leave this as a future extension.

7 Conclusion

This paper offers a new specification test for researchers interested in estimating the mean

causal effect for compliers at the cutoff in FRD designs. The test is easy to implement, has

the asymptotic size control under the null and is consistent against all fixed alternatives. We

illustrate the use of this new test in several empirical examples and show how it complements
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the existing tests that target testing the continuity of potential outcome distributions, running

variable densities, and baseline variable distributions. The Monte Carlo simulation shows our

test performs well in finite samples with moderate sample sizes.
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APPENDIX

A Proofs of the Main Results

A.1 Proof of Lemma 2.1

Without loss of generality, we consider the violation of inequality (2.5). We first consider the case

Y (1) is continuous over V . The proof is by construction. Let y′ ∈ V such that y∗ < y′ < y∗∗. Let

g0(Y ) = 1[y∗ ≤ Y ≤ y′]. Clearly, g0 ∈ GV . For simplicity, consider a set of DGPs in which Y (d)

and type T are independent conditioning on Z and Assumption 2.1 is satisfied. Among this set, choose

Y (1)|Z = c− be uniformly distributed over [y∗, y∗∗], that is, fY (1)|Z=c−(y) = δ for all y ∈ [y∗, y∗∗]. Let

Y (1)|Z = c+ have the same density as Y (1)|Z = c− outside of [y∗, y∗∗], but

fY (1)|Z=c+(y) =

 0, if y ∈ [y∗, y′],
δP (Y (1)∈[y∗,y∗∗])
P (Y (1)∈[y∗,y′]) , if y ∈ (y′, y∗∗]

It is easy to see that E[Y (1)|Z = z−] = E[Y (1)|Z = z+] by construction. On the other hand,

E[g0(Y )D|Z = c−]− E[g0(Y )D|Z = c+]

= P (Y (1) ∈ [y∗, y′], T = AAA|Z = c−)− P (Y (1) ∈ [y∗, y′], T = AAA ∪CCC|Z = c+)

= P (Y (1) ∈ [y∗, y′]|Z = c−)P (T = AAA|Z = c−)− P (Y (1) ∈ [y∗, y′]|Z = c+)P (T = AAA ∪CCC|Z = c+)

= P (Y (1) ∈ [y∗, y′]|Z = c−)P (T = AAA|Z = c−) > 0,

where the first equality holds by definition, the second equality holds because the candidate distribution

has Y (d) and T independent conditioning on Z, and the third equality and the last inequality hold by

construction. Therefore, inequality (2.5) is violated.

Next, we consider the case in which Y (1) is discrete but V contains at least three support points

{y1, y2, y3} when conditioning on T and Z. Again, let Y (1) and T be independent conditioning on Z,

and let the density or probability mass of Y (1)|Z = c+ and Y (1)|Z = c− be the exactly the same over

Y/{y1, y2, y3}. Over {y1, y2, y3}, let P (Y (1) = yk|Z = c−) = δ for all k; let

P (Y (1) = yk|Z = c+) =


0, if k = 2,

δ + δ y2−y1

y3−y1
, if k = 1,

δ + δ y3−y2

y3−y1
, if k = 3

It is clear to see that E[Y (1)|Z = z−] = E[Y (1)|Z = z+] by construction. However, if we choose

g0(Y ) = 1[y2 ≤ Y ≤ y2] = 1[Y = y2], then E[g0(Y )D|Z = c−] − E[g0(Y )D|Z = c+] > 0 by the same
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reasoning as in the continuous case.

A.2 Proof of Proposition 2.2

We prove the first pair of inequalities (2.10) and (2.11); the other two hold analogously. Inequalities

(2.10) and (2.11) provide bounds for E[Y (1)|AAA,Z = c+]. Under the identifying assumptions, E[Y |D =

1, Z = c−] can be written as:

E[Y |D = 1, Z = c−] = lim
z↑c

E[Y |D = 1, Z = z] = lim
z↑c

E[Y (1)|D = 1, Z = z]

= lim
z↑c

E[Y (1)|AAA,Z = z] = lim
z↓c

E[Y (1)|AAA,Z = z] = E[Y (1)|AAA,Z = c+], (A.1)

where the first and last equalities hold by definition, the second equality holds by the definition of Y (1),

the third one holds by Assumption 2.1 (local montononicity) that when z approaches c from below, the

event {D = 1, Z = z} is equivalent to the event {T = AAA,Z = z}, and the fourth equality holds by

Assumption 2.2 (local continuity in means). Hence, the bounds for E[Y (1)|AAA,Z = c+] is equivalent to

the bounds for E[Y |D = 1, Z = c−]. Likewise, under Assumptions 2.1 and 2.2,

q ≡ P (D = 1|Z = c−)
P (D = 1|Z = c+)

=
P (AAA|Z = c−)

P (AAA ∪CCC|Z = c+)
=

P (AAA|Z = c+)

P (AAA ∪CCC|Z = c+)
. (A.2)

In the following, we will derive sharp bounds for E[Y (1)|AAA,Z = c+]. Since we assume the conditioning

density of Y (d) is well-defined when a running variable converges to the cutoff from either side, we have

G1(y) ≡ lim
z↓c

P (Y ≤ y|D = 1, Z = z) = lim
z↓c

P (Y (1) ≤ y|AAA ∪CCC,Z = z)

= lim
z↓c

{P (Y (1) ≤ y|AAA,Z = z)P (AAA|AAA ∪CCC,Z = z) + P (Y (1) ≤ y|CCC,Z = z)P (CCC|AAA ∪CCC,Z = z)}

= lim
z↓c

P (Y (1) ≤ y|AAA,Z = z)q + lim
z↓c

P (Y (1) ≤ y|CCC,Z = z)(1− q)

where the first equality is by definition, the second equality is by definition of the potential outcome and

the fact that when z approches to c from above, the event {D = 1, Z = z} is equivalent to the event

{T = AAA ∪ CCC,Z = z}, the third equality is by the law of total probabilities, and the fourth equality is

because all the probabilities are well-defined by assumption. Therefore, the observed distribution G1

is the mixture of conditional distributions of Y (1) for always-takers and compliers, with mixing weight

equalling to q and 1 − q, respectively. Our goal is to find the bounds of expectation of the mixing

component limz↓c P (Y (1) ≤ y|AAA,Z = z).

(i) Suppose first the conditional distribution of Y (1) given D = 1 and Z in a small neighborhood of

c is continuous in y at its q-th quantile. Applying Horowitz and Manski (1995, Corollary 4.1), we know
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that the sharp bounds for E[Y (1)|AAA,Z = c+] are given by

LB+ ≡ E[Y |D = 1, Y < G−1
1L (q), Z = c+] ≤ E[Y (1)|AAA,Z = c+],

E[Y (1)|AAA,Z = c+] ≤ E[Y |D = 1, Y > G−1
1U (1− q), Z = c+] ≡ UB+,

where the lower bound is generated by a DGP in which always-takers concentrate at the lower tail

{y : G1(y) ≤ q}, and the upper bound is achieved when always-takers are concentrated at its upper tail.

Using Equation (A.1) to replace E[Y (1)|AAA,Z = c+] by E[Y |D = 1, Z = z−], we obtain inequalities (2.10)

and (2.11).

(ii) Suppose Y (d), d ∈ {0, 1}, are discrete and take values from a countable set Y = {y1, y2, · · · , yJ},
where yj < yj+1 for any 1 ≤ j < J . When the set Y takes infinitely many values, J is understood as

∞. Consider the lower bound for E[Y (1)|AAA,Z = c+] (or equivalently the lower bound of E[Y (1)|AAA,Z =

c−] = E[Y |D = 1, Z = c−]). Again, the identifiable quantity E[Y |D = 1, Z = c+] can be expressed as:

E[Y |D = 1, Z = c+]

=

J∑
j=1

yjP (Y = yj |D = 1, Z = c+) =

J∑
j=1

yjP (Y = yj |AAA ∪CCC,Z = c+)

=

J∑
j=1

yj
P (AAA ∪CCC|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA ∪CCC|Z = c+)

=

J∑
j=1

yj

{
P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA ∪CCC|Z = c+)

+
P (CCC|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA ∪CCC|Z = c+)

}
, (A.3)

where the first equality holds by the definition of conditional expectation, the second holds because as z

approaches c from above, the event {D = 1, Z = z} is equivalent to {AAA ∪CCC,Z = c}, the third holds by

Bayes’ rule, and the fourth holds by the law of total probabilities. The lower bound for E[Y (1)|AAA,Z = c+],

or equivalently the lower bound of E[Y |AAA,Z = c+], is obtained by choosing P (AAA|Y = yj , Z = c+) ∈ [0, 1]

and P (CCC|Y = yj , Z = c+) ∈ [0, 1] for j = 1, · · · , J , to minimize

J∑
j=1

yjP (Y = yj |AAA,Z = z+) =

J∑
j=1

yj
P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA|Z = c+)

subject to Equation (A.3), and by Equation (A.2) and Assumption 2.2, also subject to

J∑
j=1

P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+) = qP (D = 1|Z = c+).
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J∑
j=1

P (CCC|Y = yj , Z = c+)P (Y = yj |Z = c+) = (1− q)P (D = 1|Z = c+).

The solution to the problem depends on an index j∗ ≥ 0 such that

j∗∑
j=1

P (Y = yj |Z = c+) ≤ qP (D = 1|Z = c+), (A.4)

but
j∗+1∑
j=1

P (Y = yj |Z = c+) > qP (D = 1|Z = c+)

Note that j∗ is identifiable from the data. Here we abuse the notation to define
∑0

j=1(·)j = 0 to

accommodate the case where j∗ = 0. Then to minimize E[Y |AAA,Z = c+], it is clear that we need to set

P (AAA|Y = yj , Z = c+) = 1 for all j ≤ j∗, and then set

P (AAA|Y = yj∗+1, Z = c+) =
qP (D = 1|Z = c+)−∑j∗

j=1 P (Y = yj |Z = c+)

P (Y = yj∗+1|Z = c+)
.

Finally, set P (AAA|Y = yj , Z = c+) = 0 for all j > j∗ + 1.

In this case, the lower bound for E[Y |AAA,Z = c+] is achieved by

LB+ ≡
j∗∑
j=1

yj
P (Y = yj |Z = c+)

P (AAA|Z = c+)
+ yj∗+1

qP (D = 1|Z = c+)−∑j∗

j=1 P (Y = yj |Z = c+)

P (AAA|Z = c+)

=

j∗∑
j=1

yj
P (Y = yj |D = 1, Z = c+)

q
+ yj∗+1

{
1−

∑j∗

j=1 P (Y = yj |D = 1, Z = c+)

q

}
, (A.5)

where the second equality holds because

P (Y = yj |Z = c+)

P (AAA|Z = c+)
=

P (Y = yj |Z = c+)

qP (D = 1|Z = c+)
=

P (Y = yj |D = 1, Z = c+)

q
,

And this lower bound can be relaxed to fit the same notation as the continuous case. To see this, note

LB+ ≥
∑j∗

j=1 yjP (Y = yj |D = 1, Z = c+)∑j∗

j=1 P (Y = yj |D = 1, Z = c+)
= E[Y |D = 1, Y < G−1

1L (q), Z = c+] (A.6)

where the inequality holds because yj∗+1 > yj∗ , and the equality holds by the definition ofG−1
1L . Therefore,

E[Y |D = 1, Y ≤ G−1
1L (q), Z = c+] is a valid lower bound for E[Y (1)|AAA,Z = c+].

Likewise, the upper bound for E[Y (1)|AAA,Z = c+] or equivalently the upper bound of E[Y |AAA,Z = c+],

is basically obtained by choosing P (AAA|Y = yj , Z = c+) ∈ [0, 1] and P (CCC|Y = yj , Z = c+) ∈ [0, 1] for
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j = 1, · · · , J , to maximize

J∑
j=1

yjP (Y = yj |AAA,Z = z+) =

J∑
j=1

yj
P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA|Z = c+)

subject to Equation (A.3) and

J∑
j=1

P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+) = qP (D = 1|Z = c+).

J∑
j=1

P (CCC|Y = yj , Z = c+)P (Y = yj |Z = c+) = (1− q)P (D = 1|Z = c+).

let j† ≥ 0 be such that
J∑

j=j†

P (Y = yj |Z = c+) ≤ qP (D = 1|Z = c+) (A.7)

but
J∑

j=j†−1

P (Y = yj |Z = c+) > qP (D = 1|Z = c+)

To maximize E[Y |AAA,Z = c+], it is clear that we need to set P (AAA|Y = yj , Z = c+) = 1 for all j ≥ j†, and

set

P (AAA|Y = yj†−1, Z = c+) =
qP (D = 1|Z = c+)−∑J

j=j† P (Y = yj |Z = c+)

P (Y = yj†−1|Z = c+)

and set P (AAA|Y = yj , Z = c+) = 0 for all j < j† − 1.

In this case, the upper bound for E[Y |AAA,Z = c+] is achieved by

UB+ ≡
J∑

j=j†

yj
P (Y = yj |Z = c+)

P (AAA|Z = c+)
+ yj†−1

qP (D = 1|Z = c+)−∑J
j=j† P (Y = yj |Z = c+)

P (Y = yj†−1|Z = c+)

=

J∑
j=j†

yj
P (Y = yj |D = 1, Z = c+)

q
+ yj†−1

{
1−

∑J
j=j† P (Y = yj |D = 1, Z = c+)

q

}
. (A.8)

This bound can also be relaxed:

UB+ ≤
∑J

j=j† yjP (Y = yj |D = 1, Z = c+)∑J
j=j† P (Y = yj |D = 1, Z = c+)

= E[Y |D = 1, Y > G−1
1U (1 − q), Z = c+],

where the inequality holds because yj† > yj†−1, and the last equality holds by the definition of G−1
1U .

Therefore, E[Y |D = 1, Y > G−1
1U (1 − q), Z = c+] is a valid upper bound for E[Y (1)|AAA,Z = c+] or

equivalently E[Y |AAA,Z = c+].
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Following the same reasoning, we can derive the sharp bounds for E[Y |NNN,Z = c−] as:

LB− =

j∗∑
j=1

yj
P (Y = yj |D = 0, Z = c−)

r
+ yj∗+1

{
1−

∑j∗

j=1 P (Y = yj |D = 1, Z = c−)

r

}
.

UB− =

J∑
j=j†

yj
P (Y = yj |D = 0, Z = c−)

q
+ yj†−1

{
1−

∑J
j=j† P (Y = yj |D = 0, Z = c−)

r

}
.

where the definitions for j∗ and j† are analogous to those in LB+ and UB+.

(iii) Finally, suppose Y (d) is continuous but has possibly mass points. If the q-th quantile is a

continuous point, then bounds can be derived following the same argument as in part (i); if a mass point

y∗ is such that

P (Y < y∗|Z = c+) ≤ qP (D = 1|Z = c+),

but

P (Y ≤ y∗|Z = c+) > qP (D = 1|Z = c+)

then the lower bound can be derived following the same argument as in part (ii) with y∗ playing the role

of yj∗ as

LB+ = E[Y |D = 1, Y < y∗, Z = c+]
P (Y < y∗|D = 1, Z = c+)

q
+ y∗

(
1− P (Y < y∗|D = 1, Z = c+)

q

)
≥ E[Y |D = 1, Y < y∗, Z = c+] = E[Y |D = 1, Y < G−1

1L (q), Z = c+].

If a mass point y† is such that

P (Y > y†|Z = c+) ≤ qP (D = 1|Z = c+),

but

P (Y ≥ y†|Z = c+) > qP (D = 1|Z = c+),

then the upper bound can be derived following the same argument as in part (ii) with y† playing the role

of yj† , and it is given by

UB+ = E[Y |D = 1, Y > y†, Z = c+]
P (Y > y†|D = 1, Z = c+)

q
+ y†

(
1− P (Y < y∗|D = 1, Z = c+)

q

)
≥ E[Y |D = 1, Y > y†, Z = c+] = E[Y |D = 1, Y > G−1

1U (1− q), Z = c+].

□□□
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Example 1.2 Suppose Y = {y1, y2, y3, y4} and P (Y = yj |D = 1, Z = c+) = 0.25 for all j. Case 1.

Suppose q = 0.26. In this case, j∗ = 1 and the sharp lower bound is given by

LB+ =
0.25

0.26
y1 +

0.01

0.26
y2;

j† = 4 and the sharp upper bound is

UB+ =
0.25

0.26
y4 +

0.01

0.26
y3.

On the other hand, G−1
1L (0.26) = inf{y ∈ Y : G1(y) ≥ 0.26} = y2; hence, a valid but non-sharp lower

bound is given by:

E[Y |D = 1, Y < G−1
1L (0.26), Z = c+] = E[Y |D = 1, Y < y2, Z = c+] = y1 < LB+.

G−1
1U (1− 0.26) = sup{y ∈ Y : G1(y) ≤ 0.74} = y3; hence, a valid but non-sharp upper bound is given by:

E[Y |D = 1, Y > G−1
1U (0.74), Z = c+] = E[Y |D = 1, Y > y2, Z = c+] = y4 > UB+.

In this case, the relaxed bounds are fairly close to the sharp bounds.

Case 2. Now if q = 0.5, then j∗ = 2 and the sharp lower bound is

LB+ =
0.25

0.5
y1 +

0.25

0.5
y2 =

y1 + y2
2

;

In this case, G−1
1L (0.5) = inf{y ∈ Y : G1(y) ≥ 0.5} = y2, and the valid but non-sharp lower bound is given

by:

E[Y |D = 1, Y < G−1
1L (0.5), Z = c+] = E[Y |D = 1, Y < y3, Z = c+] = y1 < LB+.

For the upper bound, we see j† = 3 and the sharp upper bound is

UB+ =
y3 + y4

2
.

In this case, G−1
1U (1− 0.5) = sup{y ∈ Y : G1(y) ≤ 0.5} = y3; hence, a valid but non-sharp upper bound is

given by:

E[Y |D = 1, Y > G−1
1U (0.5), Z = c+] = E[Y |D = 1, Y > y3, Z = c+] = y4 > UB+.
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Case 3. In the third case, suppose q = 0.24, then j∗ = 0 and j† = 4.The sharp bounds are given by

LB+ = y1; UB+ = y4,

In this case, the sharp bounds are not informative. On the other hand, G−1
1L (0.24) = inf{y ∈ Y : G1(y) ≥

0.24} = y1. The valid but non-sharp lower bound E[Y |D = 1, Y < G−1
1L (0.24), Z = c+] = E[Y |D = 1, Y <

y1, Z = c+] is not well-defined and hence is understood as −∞. G−1
1U (1 − 0.24) = sup{y ∈ Y : G1(y) ≤

0.76} = y4; hence, the valid but non-sharp upper bound is given by: E[Y |D = 1, Y > G−1
1U (0.5), Z = c+] =

E[Y |D = 1, Y > y4, Z = c+]. It is also not well-defined and is understood as +∞.

A.3 Proof of Proposition 3.3

By the results in Appendix B, we have

√
nh


θ̂1 − θ1

θ̂2 − θ2

θ̂3 − θ3

θ̂4 − θ4


d→ N (0,Ω),

where Ωj,k = limn→∞ h−1E[ϕθj ,iϕθk,i] for j, k = 1, 2, 3, 4. Also, for j = 1, 2, 3, 4, ϕθj ,i is either ϕc
θj ,i

or

ϕd
θj ,i

depending on whether θj is a continuous case or discrete case. We also have

√
nh


θ̂w1 − θ̂1

θ̂w2 − θ̂2

θ̂w3 − θ̂3

θ̂w4 − θ̂4


d→ N (0,Ω),

conditional on sample path with probability approaching one. Note that for j = 1, 2, 3, 4,

lim
B→∞

σ̂2
j = lim

B→∞
nhB−1

B∑
b=1

(θ̂w,b
j − θ̂j)

2 = (nh)−1
n∑

i=1

ϕ2
θj ,i + op(1)

p→ σ2
j .

Then we can apply the results in Donald and Hsu (2011) to show Proposition A.3 and we omit the details.

□□□

B Useful Lemmas

In this section, we provide regularity conditions, and show the asymptotic normality of the proposed

estimator θ̂ and the validity of the weighted bootstrap. We focus on the θ1 case and will briefly summarize
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the results for θ2, θ3 and θ4.

Assumption B.1 Assume that 0 < q < 1.

Assumption B.2 Assume that density fz(z) is twice continuously differentiable in z on (c − ϵ, c + ϵ)

and δ ≤ fz(z) ≤ M on (c− ϵ, c+ ϵ) for some ϵ > 0 and 0 < δ < M .

Assumption B.3 Assume that for the same ϵ and M in Assumption B.2,

1. E[D|Z = z] is twice continuously differentiable on z ∈ (c−ϵ, c) with absolute values of corresponding

derivatives bounded by M ;

2. E[D|Z = z] is twice continuously differentiable on z ∈ [c, c+ϵ) with absolute values of corresponding

derivatives bounded by M .

Assumption B.4 Assume that for the same ϵ and M in Assumption B.2, for d = 0 and 1,

1. E[Y |D = d, Z = z] is twice continuously differentiable on z ∈ (c − ϵ, c) with absolute values of

corresponding derivatives bounded by M ;

2. E[Y |D = d, Z = z] is twice continuously differentiable on z ∈ (c, c + ϵ) with absolute values of

corresponding derivatives bounded by M .

3. E[|Y |3|D = d, Z = z] ≤ M for z ∈ (c− ϵ, c+ ϵ).

Assumption B.5 Assume that

1. The kernel function K(·) is a non-negative symmetric bounded kernel with support [−1, 1];
∫
K(u)du =

1.

2. The bandwidth h satisfies that h → 0, nh3 → ∞, and nh5 → 0 as n → ∞.

Assumption B.6 (Continuous Case) Assume that G1(y) is continuous on (G−1
1L (q)−δ,G−1

1L (q)+δ) with

G1(G
−1
1L (q)) = q and the derivative of G1(y) is greater than δ for the same delta in Assumption B.2. In

addition, assume that for the same ϵ, ϵ and M in Assumption B.2, for all y ∈ (G−1
1L (q)− δ,G−1

1L (q) + δ),

E[DY 1(Y ≤ y)|Z = z] and E[D1(Y ≤ y)|Z = z] are twice continuously differentiable on z ∈ (c, c + ϵ)

with absolute values of corresponding derivatives bounded by M .

Assumption B.6’ (Discrete Case) Assume that y1L,ℓ < y1L,u with G1(y1L,ℓ) < q < G1(y1L,u) and

limz↓c P (Y ∈ (y1L,ℓ, y1L,u)|D = 1, Z = z) = 0.

Assumption B.7 Assume that {Wi}ni=1 is a sequence of i.i.d. pseudo random variables independent of

the sample path with E[Wi] = V ar[Wi] = 1 for all i.
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Lemma B.1 Suppose that Assumptions B.1-B.6 hold. Then

√
nh(θ̂1 − θ1) ≡

1√
nh

n∑
i=1

ϕc
θ1,i + op(1), (B.1)

where ϕc
θ1,i

is given in (B.5). Also,
√
nh(θ̂1 − θ1)

d→ N (0, V c
θ1
), where V c

θ1
= limn→ 1

hE[(ϕc
θ1,i

)2].

Lemma B.2 Suppose that Assumptions B.1-B.6 and Assumption B.7 hold. Then

√
nh(θ̂w1 − θ̂1) ≡

1√
nh

n∑
i=1

(Wi − 1)ϕc
θ1,i + op(1), (B.2)

where ϕc
θ1,i

is given in (B.5). Also,
√
nh(θ̂w1 − θ̂1)

d→ N (0, V c
θ1
) conditional on the sample path with

probability approaching 1.

Lemma B.1’ Suppose that Assumption B.6’ is in place of Assumption B.6 in Lemma B.1. Then

√
nh(θ̂1 − θ1) ≡

1√
nh

n∑
i=1

ϕd
θ1,i + op(1), (B.3)

where ϕd
θ1,i

is given in (B.6). Also,
√
nh(θ̂1 − θ1)

d→ N (0, V d
θ1
), where V d

θ1
= limn→ 1

hE[(ϕd
θ1,i

)2].

Lemma B.2’ Suppose that Assumption B.6’ is in place of Assumption B.6 in Lemma B.2. Then

√
nh(θ̂w1 − θ̂1) ≡

1√
nh

n∑
i=1

(Wi − 1)ϕd
θ1,i + op(1), (B.4)

where ϕd
θ1,i

is given in (B.5). Also,
√
nh(θ̂w1 − θ̂1)

d→ N (0, V d
θ1
) conditional on the sample path with

probability approaching 1.

Let

∆z = fz(0) ·

 µz,0 µz,1

µz,1 µz,2

 with µz,j =

∫
u≥0

ujK(u)du, for j = 0, 1, 2.

For a general random variable Xi, let

(Ê[X|Z = c+], β̂+
x ) = argmin

a,b

n∑
i=1

1(Zi ≥ c)K

(
Zi − c

h

)[
Xi − a− bZi

]2
,

(Ê[X|Z = c−], β̂−
x ) = argmin

a,b

n∑
i=1

1(Zi < c)K

(
Zi − c

h

)[
Xi − a− bZi

]2
.
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Suppose that E[X|Z = z] is twice continuously differentiable on z ∈ (c − ϵ, c) and z ∈ [c, c + ϵ) with

absolute values of corresponding derivatives bounded by M . Also, E[|X|3|D = d, Z = z] ≤ M for

z ∈ (c− ϵ, c+ ϵ).

Then by Chiang, Hsu, and Sasaki (2019) and Hsu and Shen (2022), we have

√
nh

(
Ê[X|Z = c+]− E[X|Z = c+]

)
=

1√
nh

n∑
i=1

(1 0)∆−1
z 1(Zi ≥ c)K

(
Zi − c

h

)
(Xi − E[Xi|Zi])

 1

Zi−c
h

+ op(1)

≡ 1√
nh

n∑
i=1

ϕ+
X,i + op(1),

√
nh

(
Ê[X|Z = c−]− E[X|Z = c−]

)
=

1√
nh

n∑
i=1

(1 0)∆−1
z 1(Zi < c)K

(
Zi − c

h

)
(Xi − E[Xi|Zi])

 1

Zi−c
h

+ op(1)

≡ 1√
nh

n∑
i=1

ϕ−
X,i + op(1).

Also, define H1,≤(y) = E[DY 1(Y ≤ y)|Z = c+], H1,≥(y) = E[DY 1(Y ≥ y)|Z = c+], H0,≤(y) =

E[(1 −D)Y 1(Y ≤ y)|Z = c−] and H0(y,≥) = E[(1 −D)Y 1(Y ≥ y)|Z = c−]. Let I1,≤(y) = E[D1(Y ≤
y)|Z = c+], I1(y,≥) = E[D1(Y ≥ y)|Z = c+], I0,≤(y) = E[(1 − D)1(Y ≤ y)|Z = c−] and I0,≥(y) =

E[(1−D)1(Y ≥ y)|Z = c−].

Proof of Lemma B.1: Recall that

q̂ =
Ê[D|Z = c−]

Ê[D|Z = c+]

Then by delta method, we have

√
nh (q̂ − q) =

1√
nh

n∑
i=1

1

E[D|Z = c+]
ϕ−
d,i −

q

E[D|Z = c+]
ϕ+
d,i + op(1)

≡ 1√
nh

n∑
i=1

ϕq,i + op(1).

Similarly,

Ĝ1(y) =
Ê[D1(Y ≤ y)|Z = c+]

Ê[D|Z = c+]
.

Because {1(Y ≤ y) : y ∈ R} is a Vapnik-Chervonenkis (VC) class of functions, we have uniformly over
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y ∈ R,

√
nh

(
Ĝ1(y)−G1(y)

)
=

1√
nh

n∑
i=1

1

E[D|Z = c+]
ϕ+
D1(Y≤y),i −

G1(y)

E[D|Z = c+]
ϕ+
D,i + op(1)

≡ 1√
nh

n∑
i=1

ϕG1(y),i + op(1).

In this case, G−1
1L (q) is differentiable and its derivative with respective to q is g1(G

−1
1L (q)). Then by

functional delta method, we have

√
nh

(
Ĝ−1

1L (q̂)−G−1
1L (q)

)
=
√
nh

(
Ĝ−1

1L (q̂)−G−1
1L (q̂)

)
+

√
nh

(
G−1

1L (q̂)−G−1
1L (q)

)
=
√
nh

(
Ĝ−1

1L (q)−G−1
1L (q)

)
+ op(1) + g1(G

−1
1L (q))

√
nh (q̂ − q) + op(1)

=
1√
nh

n∑
i=1

−1

g1(G
−1
1L (q))

ϕG1(G
−1
1L (q)),i + g1(G

−1
1L (q))ϕq,i + op(1)

≡ 1√
nh

n∑
i=1

ϕG−1
1L (q),i + op(1).

Note that under Assumption B.6, G1(y) is continuous in a neighborhood of G−1
1L (q), so that E[DY 1(Y <

G−1
1L (q))|Z = c+] = E[DY 1(Y ≤ G−1

1L (q))|Z = c+] = and Ê[DY 1(Y < Ĝ−1
1L (q̂))|Z = c+] is asymptot-

ically equivalent to Ê[DY 1(Y ≤ Ĝ−1
1L (q̂))|Z = c+]. Also, E[D1(Y < G−1

1L (q))|Z = c+] = E[D1(Y ≤
G−1

1L (q))|Z = c+] = and Ê[D1(Y < Ĝ−1
1L (q̂))|Z = c+] is asymptotically equivalent to Ê[D1(Y ≤

Ĝ−1
1L (q̂))|Z = c+].

We have dH1,≤(y)/dy = P1|1 · y · g1(y) and dI1,≤(y)/dy = P1|1 · g1(y). Then by the delta method, we

have

√
nh(Ĥ1,≤(Ĝ

−1
1L (q̂))−H1,≤(G

−1
1L (q)))

=
√
nh(Ĥ1,≤(Ĝ

−1
1L (q̂))−H1,≤(Ĝ

−1
1L (q̂))) +

√
nh(H1,≤(Ĝ

−1
1L (q̂))−H1,≤(G

−1
1L (q)))

=
√
nh(Ĥ1,≤(G

−1
1L (q))−H1,≤(G

−1
1L (q))) + op(1) +

√
nh(H1,≤(Ĝ

−1
1L (q̂))−H1,≤(G

−1
1L (q̂)))

=
1√
nh

n∑
i=1

ϕ+

DY 1(Y≤G−1
1L (q)),i

+ P1|1 ·G−1
1L (q) · g1(G−1

1L (q))ϕG−1
1L (q),i + op(1)

≡ 1√
nh

n∑
i=1

ϕH1,≤(G−1
1L (q)),i + op(1),

√
nh(Î1,≤(Ĝ

−1
1L (q̂))− I1,≤(G

−1
1L (q)))

=
1√
nh

n∑
i=1

ϕ+

D1(Y≤G−1
1L (q)),i

+ P1|1 · g1(G−1
1L (q))ϕG−1

1L (q),i + op(1)
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≡ 1√
nh

n∑
i=1

ϕI1,≤(G−1
1L (q)),i + op(1).

To derive the asymptotics of θ̂1, note that

√
nh(θ̂1 − θ1)

=
√
nh(Ĥ1,≤(Ĝ

−1
1L (q̂)) · Ê[D|Z = c−]− Î1,≤(Ĝ

−1
1L (q̂)) · Ê[DY |Z = c−]

−H1,≤(G
−1
1L (q)) · E[D|Z = c−] + I1,≤(G

−1
1L (q)) · E[DY |Z = c−])

=
√
nh(Ĥ1,≤(Ĝ

−1
1L (q̂)) · Ê[D|Z = c−]−H1,≤(G

−1
1L (q)) · E[D|Z = c−])

−
√
nh(Î1,≤(Ĝ

−1
1L (q̂)) · Ê[DY |Z = c−]− I1,≤(G

−1
1L (q)) · E[DY |Z = c−])

=
1√
nh

n∑
i=1

E[D|Z = c−]ϕH1,≤(G−1
1L (q)),i +H1,≤(G

−1
1L (q))ϕ

−
D,i

− E[DY |Z = c−]ϕI1,≤(G−1
1L (q)),i − I1,≤(G

−1
1L (q))ϕ

−
DY,i + op(1)

≡ 1√
nh

n∑
i=1

ϕc
θ1,i + op(1). (B.5)

Then by central limit theorem, we have
√
nh(θ̂1 − θ1)

d→ N (0, V c
θ1
). This completes the proof.□

Proof of Lemma B.2: Note that by the same arguments for Theorem 5.2 of Hsu and Shen (2022) and

the arguments for Lemma B.1, we can show that

√
nh(θ̂w1 − θ1) ≡

1√
nh

n∑
i=1

Wiϕ
c
θ1,i + op(1),

and it follows that

√
nh(θ̂w1 − θ̂1) ≡

1√
nh

n∑
i=1

(Wi − 1)ϕc
θ1,i + op(1).

In the last step, note that Wi − 1 has a mean of zero and variance of one, so we can apply the multiplier

bootstrap arguments in Chiang, Hsu, and Sasaki (2019) and obtain that
√
nh(θ̂w1 − θ̂1)

d→ N (0, V d
θ1
)

conditional on the sample path with probability approaching 1. This completes the proof.□

Proof of Lemma B.1’: Assumption B.6’ assumes that y1L,ℓ < y1L,u with G1(y1L,ℓ) < q < G1(y1L,u)

and limz↓c P (Y ∈ (y1L,ℓ, y1L,u)|D = 1, Z = z) = 0. In this case, we have G−1
1L (q)) = y1L,u. There-

fore, it is true that Ĝ1(y1L,ℓ) < q̂ < Ĝ1(y1L,u) with probability approaching one and this implies that

Ĝ−1
1L (q̂)) = y1L,u with probability approaching one. That is, we have

√
nh(Ĝ−1

1L (q̂)) − y1L,u) = op(1). In

addition, E[DY 1(Y < y1L,u)|Z = c+] = E[DY 1(Y ≤ y1L,ℓ)|Z = c+], and Ê[DY 1(Y < Ĝ−1
1L (q̂))|Z = c+]

is asymptotically equivalent to Ê[DY 1(Y < y1L,u)|Z = c+] = Ê[DY 1(Y ≤ y1L,ℓ)|Z = c+]. Sim-
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ilarly, E[D1(Y < y1L,u)|Z = c+] = E[D1(Y ≤ y1L,ℓ)|Z = c+], and Ê[D1(Y < Ĝ−1
1L (q̂))|Z = c+]

is asymptotically equivalent to Ê[D1(Y < y1L,u)|Z = c+] = Ê[D1(Y ≤ y1L,ℓ)|Z = c+]. Because
√
nh(Ĝ−1

1L (q̂))− y1L,u) = op(1), the estimation effect of Ĝ−1
1L (q̂)) will be asymptotically negligible. There-

fore,

√
nh(Ĥ1,≤(y1L,ℓ)−H1,≤(y1L,ℓ)) =

1√
nh

n∑
i=1

ϕ+
DY 1(Y≤y1L,ℓ),i

+ op(1) ≡
1√
nh

n∑
i=1

ϕH1,≤(y1L,ℓ),i + op(1),

√
nh(Î1,≤(y1L,ℓ)− I1,≤(y1L,ℓ)) =

1√
nh

n∑
i=1

ϕ+
D1(Y≤y1L,ℓ),i

+ op(1) ≡
1√
nh

n∑
i=1

ϕI1,≤(y1L,ℓ),i + op(1).

As a result, in this case,

√
nh(θ̂1 − θ1)

=
√
nh(Ĥ1,≤(y1L,ℓ) · Ê[D|Z = c−]− Î1,≤(y1L,ℓ) · Ê[DY |Z = c−]

−H1,≤(y1L,ℓ) · E[D|Z = c−] + I1,≤(y1L,ℓ) · E[DY |Z = c−])

=
1√
nh

n∑
i=1

E[D|Z = c−]ϕH1,≤(y1L,ℓ),i +H1,≤(y1L,ℓ)ϕ
−
D,i

− E[DY |Z = c−]ϕI1,≤(y1L,ℓ),i − I1,≤(y1L,ℓ)ϕ
−
DY,i + op(1)

≡ 1√
nh

n∑
i=1

ϕd
θ1,i + op(1). (B.6)

Then by the central limit theorem, we have
√
nh(θ̂1 − θ1)

d→ N (0, V d
θ1
). This completes the proof.□

Proof of Lemma B.2’: The proof is similar to that for Lemma B.2, so we omit the details.□

To conclude this section, we provide the influence function representations for θ̂2, θ̂3 and θ̂4. For

brevity, we do not write down the regularity conditions for these estimators because they are similar to

those for θ1 case.

Let H1,≥(y) = E[DY 1(Y ≥ y)|Z = c+], H0,≤(y) = E[(1 − D)Y 1(Y ≤ y)|Z = c−] and H0(y,≥
) = E[(1 − D)Y 1(Y ≥ y)|Z = c−]. Let I1(y,≥) = E[D1(Y ≥ y)|Z = c+], I0,≤(y) = E[(1 − D)1(Y ≤
y)|Z = c−] and I0,≥(y) = E[(1 − D)1(Y ≥ y)|Z = c−]. In addition, for the continuous case, We

have dH1,≥(y)/dy = −P1|1 · y · g1(y), dH0,≤(y)/dy = P0|0 · y · g0(y), dH0,≥(y)/dy = −P0|0 · y · g0(y),
dI1,≥(y)/dy = −P1|1 · g1(y), dI0,≤(y)/dy = P0|0 · g0(y), and dI0,≥(y)/dy = −P0|0 · g0(y).

Recall that

r̂ =
Ê[1−D|Z = c+]

Ê[1−D|Z = c−]
.

43



Then by delta method, we have

√
nh (r̂ − r) =

1√
nh

n∑
i=1

1

E[1−D|Z = c−]
ϕ+
1−d,i −

r

E[1−D|Z = c−]
ϕ−
1−d,i + op(1)

≡ 1√
nh

n∑
i=1

ϕr,i + op(1).

Similarly,

Ĝ0(y) =
Ê[(1−D)1(Y ≤ y)|Z = c−]

Ê[1−D|Z = c−]

and

√
nh

(
Ĝ0(y)−G0(y)

)
=

1√
nh

n∑
i=1

1

E[1−D|Z = c−]
ϕ−
(1−D)1(Y≤y),i −

G0(y)

E[1−D|Z = c−]
ϕ−
1−D,i + op(1)

≡ 1√
nh

n∑
i=1

ϕG0(y),i + op(1).

For the continuous case, we have

√
nh

(
Ĝ−1

1U (1− q̂)−G−1
1U (1− q)

)
=
√
nh

(
Ĝ−1

1U (1− q)−G−1
1U (1− q)

)
+ op(1)− g1(G

−1
1U (1− q))

√
nh (q̂ − q) + op(1)

=
1√
nh

n∑
i=1

−1

g1(G
−1
1U (1− q))

ϕG1(G
−1
1U (1−q)),i − g1(G

−1
1U (1− q))ϕq,i + op(1)

≡ 1√
nh

n∑
i=1

ϕG−1
1U (1−q),i + op(1),

√
nh

(
Ĝ−1

0L (r̂)−G−1
0L (r)

)
=
√
nh

(
Ĝ−1

0L (r)−G−1
0L (r)

)
+ op(1) + g0(G

−1
0L (r))

√
nh (r̂ − r) + op(1)

=
1√
nh

n∑
i=1

−1

g0(G
−1
0L (r))

ϕG0(G
−1
0L (r)),i + g0(G

−1
0L (r))ϕr,i + op(1)

≡ 1√
nh

n∑
i=1

ϕG−1
0L (r),i + op(1),

√
nh

(
Ĝ−1

0U (1− r̂)−G−1
0U (1− r)

)
=
√
nh

(
Ĝ−1

0U (1− r)−G−1
0U (1− r)

)
+ op(1)− g0(G

−1
0U (1− r))

√
nh (r̂ − r) + op(1)

=
1√
nh

n∑
i=1

−1

g0(G
−1
0U (1− r))

ϕG0(G
−1
0U (1−r)),i − g0(G

−1
0U (1− r))ϕr,i + op(1)

≡ 1√
nh

n∑
i=1

ϕG−1
0U (1−r),i + op(1).
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Next,

√
nh(Ĥ1,≥(Ĝ

−1
1U (1− q̂))−H1,≥(G

−1
1U (1− q)))

=
√
nh(Ĥ1,≥(Ĝ

−1
1U (1− q̂))−H1,≥(Ĝ

−1
1U (1− q̂))) +

√
nh(H1,≥(Ĝ

−1
1U (1− q̂))−H1,≥(G

−1
1U (1− q)))

=
√
nh(Ĥ1,≥(G

−1
1U (1− q))−H1,≥(G

−1
1U (1− q))) + op(1) +

√
nh(H1,≥(Ĝ

−1
1U (1− q̂))−H1,≥(G

−1
1U (1− q)))

=
1√
nh

n∑
i=1

ϕ+

DY 1(Y≤G−1
1U (1−q)),i

+ P1|1 ·G−1
1U (q) · g1(G−1

1U (1− q))ϕG−1
1U (1−q),i + op(1)

≡ 1√
nh

n∑
i=1

ϕH1,≥(G−1
1U (1−q)),i + op(1)

√
nh(Ĥ0,≤(Ĝ

−1
0L (r̂))−H0,≤(G

−1
0L (r)))

=
1√
nh

n∑
i=1

ϕ−
(1−D)Y 1(Y≤G−1

0L (r)),i
+ P0|0 ·G−1

0L (r) · g0(G−1
0L (r))ϕG−1

0L (r),i + op(1)

≡ 1√
nh

n∑
i=1

ϕH0,≤(G−1
0L (r)),i + op(1),

√
nh(Ĥ0,≥(Ĝ

−1
0U (1− r̂))−H1,≥(G

−1
0U (1− r)))

=
1√
nh

n∑
i=1

ϕ−
(1−D)Y 1(Y≤G−1

1U (1−r)),i
+ P0|0 ·G−1

0U (r) · g0(G−1
1U (1− r))ϕG−1

0U (1−r),i + op(1)

≡ 1√
nh

n∑
i=1

ϕH0,≥(G−1
0U (1−r)),i + op(1),

Finally, we have

√
nh(Î1,≤(Ĝ

−1
1L (q̂))− I1,≤(G

−1
1L (q)))

=
1√
nh

n∑
i=1

ϕ+

D1(Y≤G−1
1L (q)),i

+ P1|1 · g1(G−1
1L (q))ϕG−1

1L (q),i + op(1)

≡ 1√
nh

n∑
i=1

ϕI1,≤(G−1
1L (q)),i + op(1),

√
nh(Î1,≥(Ĝ

−1
1U (1− q̂))− I1,≥(G

−1
1U (1− q)))

=
√
nh(Î1,≥(G

−1
1U (1− q))− I1,≥(G

−1
1U (1− q))) + op(1) +

√
nh(I1,≥(Ĝ

−1
1U (1− q̂))− I1,≥(G

−1
1U (1− q)))

=
1√
nh

n∑
i=1

ϕ+

D1(Y≤G−1
1U (1−q)),i

+ P1|1 · g1(G−1
1U (1− q))ϕG−1

1U (1−q),i + op(1)

≡ 1√
nh

n∑
i=1

ϕI1,≥(G−1
1U (1−q)),i + op(1),

√
nh(Î0,≤(Ĝ

−1
0L (r̂))− I0,≤(G

−1
0L (r)))

=
1√
nh

n∑
i=1

ϕ−
(1−D)1(Y≤G−1

0L (r)),i
+ P0|0 · g0(G−1

0L (r))ϕG−1
0L (r),i + op(1)
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≡ 1√
nh

n∑
i=1

ϕI0,≤(G−1
0L (r)),i + op(1),

√
nh(Î0,≥(Ĝ

−1
0U (1− r̂))− I1,≥(G

−1
0U (1− r)))

=
1√
nh

n∑
i=1

ϕ−
(1−D)1(Y≤G−1

1U (1−r)),i
+ P0|0 · g0(G−1

1U (1− r))ϕG−1
0U (1−r),i + op(1)

≡ 1√
nh

n∑
i=1

ϕI0,≥(G−1
0U (1−r)),i + op(1).

Finally, for the continuous case, we have

√
nh(θ̂2 − θ2)

=
√
nh(Î1,≥(Ĝ

−1
1U (1− q̂)) · Ê[DY |Z = c−]− Ĥ1,≥(Ĝ

−1
1U (1− q̂)) · Ê[D|Z = c−]

− I1,≥(G
−1
1U (1− q)) · E[DY |Z = c−] +H1,≥(G

−1
1U (1− q)) · E[D|Z = c−])

=
1√
nh

n∑
i=1

E[DY |Z = c−]ϕI1,≥(G−1
1U (1−q)),i − I1,≥(G

−1
1U (1− q))ϕ−

DY,i

− E[D|Z = c−]ϕH1,≥(G−1
1U (1−q)),i +H1,≥(G

−1
1U (1− q))ϕ−

D,i + op(1)

≡ 1√
nh

n∑
i=1

ϕc
θ2,i + op(1),

√
nh(θ̂3 − θ3)

=
√
nh(Ĥ0,≤(Ĝ

−1
0L (r̂)) · Ê[1−D|Z = c+]− Î0,≤(Ĝ

−1
0L (r̂)) · Ê[(1−D)Y |Z = c+]

−H0,≤(G
−1
0L (r)) · E[1−D|Z = c+] + I1,≤(G

−1
1L (q)) · E[(1−D)Y |Z = c+])

=
1√
nh

n∑
i=1

E[(1−D)|Z = c+]ϕH0,≤(G−1
0L (r)),i +H0,≤(G

−1
0L (r))ϕ

+
1−D,i

− E[(1−D)Y |Z = c+]ϕI0,≤(G−1
0L (r)),i − I0,≤(G

−1
0L (r))ϕ

+
(1−D)Y,i + op(1)

≡ 1√
nh

n∑
i=1

ϕc
θ3,i + op(1),

√
nh(θ̂4 − θ4)

=
√
nh(Î0,≥(Ĝ

−1
0U (1− r̂)) · Ê[(1−D)Y |Z = c+]− Ĥ0,≥(Ĝ

−1
0U (1− r̂)) · Ê[1−D|Z = c+]

− I0,≥(G
−1
0U (1− r)) · E[(1−D)Y |Z = c+] +H0,≥(G

−1
0U (1− r)) · E[1−D|Z = c+])

=
1√
nh

n∑
i=1

E[DY |Z = c+]ϕI0,≥(G−1
0U (1−r)),i − I0,≥(G

−1
0U (1− r))ϕ+

(1−D)Y,i

− E[D|Z = c+]ϕH0,≥(G−1
0U (1−r)),i +H0,≥(G

−1
0U (1− r))ϕ+

1−D,i + op(1)

≡ 1√
nh

n∑
i=1

ϕc
θ4,i + op(1).
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For the discrete case, we have

√
nh(θ̂2 − θ2)

=
√
nh(Î1,≥(y1U,u) · Ê[DY |Z = c−]− Ĥ1,≥(y1U,u) · Ê[D|Z = c−]

− I1,≥(y1U,u) · E[DY |Z = c−] +H1,≥(y1U,u) · E[D|Z = c−])

=
1√
nh

n∑
i=1

E[DY |Z = c−]ϕI1,≥(y1U,u),i − I1,≥(y1U,u)ϕ
−
DY,i

− E[D|Z = c−]ϕH1,≥(y1U,u),i +H1,≥(y1U,u)ϕ
−
D,i + op(1)

≡ 1√
nh

n∑
i=1

ϕd
θ2,i + op(1),

√
nh(θ̂3 − θ3)

=
√
nh(Ĥ0,≤(y0L,ℓ) · Ê[1−D|Z = c+]− Î0,≤(y0L,ℓ) · Ê[(1−D)Y |Z = c+]

−H0,≤(y0L,ℓ) · E[1−D|Z = c+] + I1,≤(y0L,ℓ) · E[(1−D)Y |Z = c+])

=
1√
nh

n∑
i=1

E[(1−D)|Z = c+]ϕH0,≤(y0L,ℓ),i +H0,≤(y0L,ℓ)ϕ
+
1−D,i

− E[(1−D)Y |Z = c+]ϕI0,≤(y0L,ℓ),i − I0,≤(y0L,ℓ)ϕ
+
(1−D)Y,i + op(1)

≡ 1√
nh

n∑
i=1

ϕd
θ3,i + op(1),

√
nh(θ̂4 − θ4)

=
√
nh(Î0,≥(y0U,u) · Ê[(1−D)Y |Z = c+]− Ĥ0,≥(y0U,u) · Ê[1−D|Z = c+]

− I0,≥(y0U,u) · E[(1−D)Y |Z = c+] +H0,≥(y0U,u) · E[1−D|Z = c+])

=
1√
nh

n∑
i=1

E[DY |Z = c+]ϕI0,≥(y0U,u),i − I0,≥(y0U,u)ϕ
+
(1−D)Y,i

− E[D|Z = c+]ϕH0,≥(y0U,u),i +H0,≥(y0U,u)ϕ
+
1−D,i + op(1)

≡ 1√
nh

n∑
i=1

ϕd
θ4,i + op(1).
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C Additional Simulation and Empirical Results

Table 7: Rejection Frequency at 1% Level

Undersmoothing MSE-RBC CER-RBC
n IK CCT AI IK CCT AI IK CCT AI

500 0.014 0.001 0.040 0.001 0.000 0.013 0.008 0.001 0.035
DGP1 1000 0.153 0.059 0.135 0.030 0.008 0.071 0.116 0.038 0.144
(Power) 2000 0.375 0.259 0.379 0.181 0.068 0.203 0.325 0.204 0.376

4000 0.583 0.499 0.608 0.465 0.328 0.463 0.534 0.446 0.610
8000 0.873 0.745 0.870 0.740 0.573 0.703 0.816 0.674 0.864

500 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
DGP2 1000 0.001 0.000 0.004 0.000 0.000 0.005 0.000 0.000 0.001
(Size) 2000 0.004 0.005 0.003 0.004 0.003 0.011 0.004 0.003 0.005

4000 0.014 0.009 0.001 0.009 0.001 0.003 0.011 0.005 0.003
8000 0.010 0.008 0.005 0.010 0.010 0.010 0.008 0.009 0.006

500 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

DGP3 1000 0.000 0.000 0.001 0.000 0.000 0.010 0.000 0.000 0.003
(Power) 2000 0.005 0.000 0.004 0.001 0.001 0.008 0.003 0.001 0.001

4000 0.003 0.004 0.006 0.003 0.001 0.018 0.004 0.003 0.008
8000 0.004 0.005 0.003 0.005 0.006 0.011 0.004 0.008 0.003

500 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
DGP4 1000 0.001 0.000 0.001 0.000 0.000 0.006 0.001 0.000 0.001
(Size) 2000 0.003 0.006 0.006 0.001 0.000 0.011 0.003 0.004 0.006

4000 0.011 0.005 0.006 0.004 0.003 0.019 0.006 0.005 0.005
8000 0.006 0.005 0.004 0.008 0.004 0.010 0.005 0.005 0.005
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Table 8: Rejection Frequency at 10% Level

Undersmoothing MSE-RBC CER-RBC
n IK CCT AI IK CCT AI IK CCT AI

500 0.253 0.203 0.309 0.110 0.046 0.185 0.220 0.150 0.303
DGP1 1000 0.494 0.389 0.469 0.319 0.201 0.341 0.444 0.361 0.464
(Power) 2000 0.683 0.604 0.675 0.540 0.413 0.544 0.629 0.559 0.679

4000 0.890 0.798 0.891 0.773 0.624 0.764 0.858 0.738 0.893
8000 0.988 0.963 0.994 0.946 0.865 0.920 0.973 0.931 0.994

500 0.071 0.056 0.079 0.034 0.014 0.086 0.056 0.041 0.073
DGP2 1000 0.103 0.079 0.060 0.074 0.050 0.089 0.089 0.078 0.058
(Size) 2000 0.100 0.093 0.071 0.086 0.089 0.114 0.105 0.090 0.073

4000 0.064 0.100 0.060 0.080 0.085 0.081 0.073 0.094 0.059
8000 0.066 0.078 0.076 0.095 0.091 0.094 0.085 0.075 0.075

500 0.060 0.051 0.056 0.031 0.023 0.063 0.054 0.048 0.056
DGP3 1000 0.084 0.075 0.065 0.068 0.051 0.098 0.084 0.066 0.061
(Power) 2000 0.081 0.084 0.059 0.070 0.074 0.095 0.081 0.073 0.055

4000 0.060 0.074 0.070 0.078 0.065 0.100 0.065 0.071 0.071
8000 0.060 0.079 0.055 0.094 0.086 0.078 0.079 0.078 0.055

500 0.055 0.048 0.060 0.035 0.025 0.068 0.049 0.036 0.060
DGP4 1000 0.076 0.063 0.081 0.059 0.034 0.103 0.073 0.061 0.083
(Size) 2000 0.078 0.076 0.075 0.081 0.083 0.091 0.085 0.078 0.074

4000 0.081 0.069 0.071 0.091 0.099 0.094 0.095 0.079 0.068
8000 0.054 0.076 0.056 0.065 0.086 0.084 0.056 0.081 0.056

Table 9: Bandwidth Values for Columbian SR Data

Bandwidth Household edu. spending Total spending on food Total monthly exp.
n = 61969 n = 59398 n = 23140

2 (2,2) (2,2) (2,2)
3 (3,3) (3,3) (3,3)
4 (4,4) (4,4) (4,4)
IK-US ( 6.5,6.1) (6.7,6.4) (12.4,11.6)
IK-MSE-RBC ( 7.9, 7.9) (8.1,8.1) (14.5,14.5)
IK-CER-RBC (5.1,4.5) (5.3,4.7) (10.2,8.8)
CCT-US (2.9,2.8) (3.5,3.4) (3.2,3.0)
CCT-MSE-RBC (3.5,3.5) ( 4.2, 4.2) (3.8,3.8)
CCT-CER-RBC (2.3,2.0) (2.8,2.5) (2.7,2.3)
AI-US (5.0,11.9) (3.5,7.6) (6.8,11.7)
AI-MSE-RBC (6.1,15.1) (4.2,9.7) (7.9,14.6)
AI-CER-RBC (4.0,8.8) (2.8,5.6) (5.6,8.8)
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Table 10: Bandwidth Values Israeli School Data (Grade 4)

g4math g4verb
Bandwidth 40(n=984) 80(n=1376) 120(n=976) 40(n=984) 80(n=1376) 120(n=976)

Fixed at 3 (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)
Fixed at 5 (5,5) (5,5) (5,5) (5,5) (5,5) (5,5)
IK-US (3.9,3.9) (2.7,2.8) (4.0,4.1) (4.0,3.9) (3.2,3.2) (4.2,4.4)
IK-MSE-RBC (4.4,4.4) (3.2,3.2) (4.6,4.6) (4.5,4.5) (3.7,3.7) (4.9,4.9)
IK-CER-RBC (3.3,3.3) (2.3,2.3) (3.3,3.6) (3.4,3.3) (2.6,2.7) (3.5,3.8)
CCT-US (10.6,10.4) (10.4,10.5) (8.6,9.0) (11,10) (10.2,10.2) (10.3,10.7)
CCT-MSE-RBC (12.0,12.0) (12.1,12.1) (10,10) (12,12) (11.8,11.8) (11.9,11.9)
CCT-CER-RBC (9.0,8.7) (8.6,8.9) (7.2,7.8) (9.4,9.0) (8.4,8.7) (8.5,9.2)
AI-US (11.1,15.0) (15,9.2) (15,10) (7.6,15) (13.6,9.7) (15,13.3)
AI-MSE-RBC (12.6,17.8) (23,10.6) (44.7,11.6) (8.6,17.9) (15.9,11.1) (74.9,14.9)
AI-CER-RBC (9.5,12.8) (16.6,7.8) (32,9) (6.5,12.9) (11.3,8.1) ( 53.6,11.5)

Table 11: Bandwidth Values Israeli School Data (Grade 5)

g5math g5verb
Bandwidth 40(n=984) 80(n=1359) 120(n=905) 40(n=984) 80(n=1359) 120(n=905)

Fixed at 3 (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)
Fixed at 5 (5,5) (5,5) (5,5) (5,5) (5,5) (5,5)
IK-US (4.0,3.9) (3.8,3.9) (3.7,3.8) (4.2,4.1) (3.7,3.7) (3.2,3.3)
IK-MSE-RBC (4.5,4.5) (4.5,4.5) (4.3,4.3) (4.7,4.7) (4.3,4.3) (3.7,3.7)
IK-CER-RBC (3.4,3.3) (3.2,3.3) (3.1,3.3) (3.6,3.4) (3.1,3.2) (2.7,2.9)
CCT-US (5.6,5.5) (10.4,10.5) (8.0,8.3) (7.1,7.0) (10.5,10.7) (6.7,7.0)
CCT-MSE-RBC (6.3,6.3) (12.1,12.1) (9.3,9.3) (8.1,8.1) (12.2,12.2) (7.8,7.8)
CCT-CER-RBC (4.7,4.5) (8.6,8.9) (6.7,7.2) (6.1,5.8) (8.7,9.0) (5.6,6.1)
AI-US (14.9,15.0) (14.9,15) (15,8.1) (6.4,11.5) (15,15) (15,6.9)
AI-MSE-RBC (16.9,52) (17.4,22) (31.7,9.1) (7.3,13.3) (17.8,18.3) (28,7.7)
AI-CER-RBC (12.7,38.2) (12.9,16.2) (22.7,7.1) (5.5,9.6) (12.6,13.5) ( 20.3,6.0)
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Table 12: Bandwidth for Romanian High School Data

Attending best school Avoiding worst school
Bandwidth Left Right Left Right

IK-US 0.741 0.750 0.720 0.667
IK-MSE-RBC 0.940 0.940 0.855 0.855
IK-CER-RBC 0.550 0.566 0.582 0.490
CCT-US 0.572 0.579 0.144 0.133
CCT-MSE-RBC 0.726 0.726 0.171 0.171
CCT-CER-RBC 0.424 0.436 0.116 0.098
AI-US 0.777 0.763 0.105 0.375
AI-MSE-RBC 0.986 0.957 0.124 0.481
AI-CER-RBC 0.577 0.575 0.085 0.276
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