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Abstract

Regression discontinuity (RD) is a popular tool for the analysis of economic policies

or treatment interventions. This paper extends the classic static RD model to a dynamic

framework, where observations are eligible for repeated RD experiments and, therefore,

treatments. Such dynamics often complicate the identification and estimation of longer-

term average treatment effects. Previous empirical research with such designs typically

ignored the dynamics in the model or adopted restrictive identifying assumptions. This

paper studies identification strategies under various sets of weaker identifying assump-

tions and proposes associated estimation and inference methods. The proposed methods

are applied to revisit the effect of Californian local school bonds in the seminal study of

Cellini et al. (2010).
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1 Introduction

Regression discontinuity (RD) models are popular in policy evaluations or other settings

of treatment effect analysis. The setup exploits discontinuity in the design of many

policies to nonparametrically identify treatment effects for observations near the eligi-

bility cutoff. While the classic RD setup, either sharp or fuzzy, is static, in empirical

applications we often see situations where each individual could potentially participate

in multiple RD experiments and sometimes receive multiple treatments over a period of

time. For example, voter-approved measures such as unionization (e.g., DiNardo and

Lee, 2004; Lee and Mas, 2012) or local school bonds (e.g., Cellini et al., 2010) could be

put forward in front of voters repeatedly over time. A large body of literature in political

science (e.g., Ferreira and Gyourko, 2009; Caughey and Sekhon, 2011; Colonnelli et al.,

2020) uses RD to study the effect of political races that happen on a regular basis. Some

RD applications study the effect of having peers passing RD eligibility tests and receiv-

ing treatment interventions (e.g., Dube et al., 2019 and Johnson, 2020). In such studies,

observations could again be exposed to RD experiments repeatedly.

In this paper, we study a general multi-period dynamic RD model under the poten-

tial outcome framework. We formalize the concept of primary treatment effects which

prohibit the reception of treatments after the focal round of RD and show that pri-

mary treatment effects could be used to construct all other treatment effects defined as

differences of potential outcomes. We distinguish primary treatment effects from total

treatment effects that do not restrict treatment status after the focal round of RD. It

is well-known that classic static RD models could be regarded as local random experi-

ments under proper smoothness conditions, hence providing nonparametric identification
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Program within the framework of the Higher Education Sprout Project by the Ministry of Education of

Taiwan.
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of average/distributional treatment effects for marginal individuals at the RD cutoff. For

dynamic RD models considered in this paper, however, smoothness conditions alone could

only identify average/distributional total treatment effects and immediate primary treat-

ment effects. If longer-term primary treatment effects are of interest, additional identi-

fying conditions need to be imposed. We study constructive identification of longer-term

average primary treatment effects under various assumptions and propose associated es-

timation procedures. For inference, we focus on the asymptotics of a proposed two-step

semiparametric estimation procedure for longer-term average primary treatment effects,

as the inference of other nonparametric estimators are standard.

Among empirical studies with dynamic RD settings, the pioneering work by Cellini

et al. (2010) (CFR) and subsequent studies that adopt their method (e.g., Darolia, 2013;

Abott et al., 2020) are the only ones, as far as the authors know, that take the dynamics

in model seriously. CFR identifies longer-term average primary treatment effects with an

innovative recursive RD strategy and an event study type strategy. Both strategies take a

parametric perspective and use restrictive assumptions, including path independence and

mean equivalence of treatment effects in different rounds and homogeneous individual

treatment effects. We argue that the popularity of classic static RD models lies in

the nonparametric nature of model identification, which only requires mild conditions,

and identification in dynamic RD models shall carry the same features. In this paper,

we study nonparametric identification of longer-term average primary treatment effects

under identifying assumptions that are substantially weaker than those imposed in CFR.

In addition to identification, this paper contributes to the RD literature by intro-

ducing new estimation and inference procedures from the statistics literature. Our main

estimators for longer-term average treatment effects follow two steps. In the first step,

we model the propensity score functions semiparametrically and use the local MLE esti-

mator in Cai et al. (2000). This kind of modeling is particularly suitable for the dynamic

RD setting because the first-step propensity score functions need to condition on ad-

ditional covariates as well as the running variable. The proposed local MLE estimator

has the advantage of staying local to the RD cutoff along the dimension of the running

variable, which is vital to RD estimation as is argued in Gelman and Imbens (2019) while

remaining parametric along the dimension of other controls so as not to overburden the
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convergence rate of the two-step estimator. In terms of inference, this paper extends

the weighted bootstrap method designed in Ma and Kosorok (2005) for semiparametric

M-estimation to the proposed two-step local semiparametric estimation procedure.

Our paper is also related to the literature on dynamic treatment effects in non-RD

settings. For example, Heckman et al. (2016) study treatment effects in ordered and

unordered multi-stage decision problems with an instrumental variable approach. Sun

and Abraham (forthcoming), Callaway and Sant’Anna (forthcoming), and Athey and

Imbens (forthcoming) examine treatment effects in panel event studies with one single

irreversible treatment. De Chaisemartin and d’Haultfoeuille (2020) study linear two-

way fixed-effect regressions for panel data models with treatment effect heterogeneity

across groups or over time. Even without considering the RD setting, models and goals

considered in our paper are different. In our model, individuals have the opportunity of

obtaining repeated treatments, and the goal for identification is to disentangle different

average primary treatment effects that make up longer-term average total treatment

effects. Our dynamic RD model allows individuals to self-select into subsequent rounds

of RD experiments and allows potential RD participation decisions and running variables

in later rounds to vary with treatment decisions in earlier rounds.

The rest of the paper is organized as follows. Section 2 lays out the formal frame-

work of dynamic RD and defines various treatment effects of interests. The section also

reevaluates the recursive identification strategy proposed in Cellini et al. (2010) under

the potential outcome framework. Section 3 studies both point and partial identification

of longer-term average primary treatment effects under different identifying assumptions.

Section 4 discusses estimation and inference of various identified treatment effects. Monte

Carlo simulations in Section 5 show good small sample performances of the proposed es-

timators. Section 6 revisits the empirical study of local school bonds in CFR using the

proposed procedures. Section 7 concludes.
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2 Model Setup

2.1 Potential Outcome Framework

We observe a panel of n individuals over T time periods. In each time period, an RD

experiment takes place at the beginning of the time period, and treatment is administrated

immediately following the experiment for those who pass the RD threshold. An outcome

is observed at the end of each time period. Everyone takes part in the first RD experiment

and can choose (or be chosen) to participate in one or more rounds of subsequent RDs.

We use subscript k, k = 1, 2, ...,K, to denote the round of RD experiments or treatment

interventions and t, t = 1, 2, ..., T , to denote the period of observed outcomes. Although

in many settings, outcomes can be observed in periods after the last round of treatment

intervention, it is not necessary to distinguish such longer-term outcomes from those

that occur right after the last round of treatment in terms of econometrics modeling.

Therefore, we assume without loss of generality that T = K.

Let Sk be the observed participation indicator for the k-th round RD experiment.

If an individual participates in the k-th period, Sk = 1; otherwise, Sk = 0. Assume

that everyone participates in the first period, so S1 = 1 and is degenerate. Let Zk be

the running variable of the k-th RD experiment; Zk is only observed for individuals with

Sk = 1. The observed treatment status of an individual in round k is Dk = 1(Zk ≥ 0)·Sk,

once we normalize thresholds of all RD experiments to 0.

Let Sk(`
k−1) be the potential k-th round participation indicator and Zk(`

k−1) the

potential k-th round running variable with path of past treatment statuses summarized

by `k−1 = (d1, d2, ..., dk−1) ∈ {0, 1}k−1; k ≥ 2. Let Lk−1 be the set of all possible

paths of treatment statuses for a total of k − 1 periods. Without further restriction, the

canonical count of the set, denoted by |Lk−1|, is 2k−1. For example, L1 = {0, 1} and

L2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. If an individual could only receive up to one treatment,

a special case that will be discussed later, |Lk−1| = k. The potential k-th round treatment

decision is then Dk(`
k−1) = 1(Zk(`

k−1) ≥ 0) ·Sk(`k−1) for k ≥ 2. Treatment decisions are

path-dependent because treatment status in previous rounds could contribute to both

RD participation decisions and values of running variables in future rounds.

The observed treatment status Dk for k ≥ 2 could be represented by potential treat-
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ment decisions.

Dk =
∑

`k−1∈Lk−1

Dk(`
k−1) ·D(`k−1), (2.1)

where D(.) is a path indicator. For example, D(`1) = D`1
1 · (1−D1)1−`1 with `1 ∈ {0, 1}

and D(`2) = D
`21
1 ·(1−D1)1−`21 ·D2(`21)`

2
2 ·(1−D2(`21))1−`22 with `2 ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},

where `k−1
s is the s-th dimension of `k−1. {D(`k) = 1} ⇔ {D1 = `k1, D2(`k1) = `k2, ..., Dk(`

k
1:(k−1)) =

`kk} ⇔ {D1 = `k1, D2 = `k2, ..., Dk = `kk}. When k = 2, D2 = D2(0) · (1−D1) +D2(1) ·D1.

When k = 3, D3 = D3((0, 0)) · (1 − D1) · (1 − D2(0)) + D3((0, 1)) · (1 − D1) · D2(0) +

D3((1, 0)) ·D1 · (1−D2(1)) +D3((1, 1)) ·D1 ·D2(1).

Let Yt be the observed outcome in time period t, and Yt(`
t) be the potential outcome

with the path of past treatment statuses summarized by `t, for t = 1, ..., T . Then

Yt =
∑
`t∈Lt

Yt(`
t) ·D(`t). (2.2)

When t = 1, Y1 = Y1(0) · (1−D1)+Y1(1) ·D1. When t = 2, Y2 = Y2((0, 0)) · (1−D1) · (1−

D2(0)) +Y2((0, 1)) · (1−D1) ·D2(0) +Y2((1, 0)) ·D1 · (1−D2(1)) +Y2((1, 1)) ·D1 ·D2(1).

The above-defined dynamic RD model is different from a setting where observations

could take multiple RD eligibility tests but only receive up to one treatment after all RD

eligibility tests. For example, Clark and Martorell (2014) use RD to study the effect of a

high school diploma, while every student has multiple chances to take the test and qualify

for the diploma. It is worthwhile to point out that the RD setting in Clark and Martorell

(2014) could be treated as a classic fuzzy RD model, where those who would opt out

or fail to meet later-round RD cutoffs upon failing the first round could be treated as

compliers, and those who earn eligibility to treatment through later rounds of RD could

be treated as always-takers. Our dynamic RD setup is different. Treatments in our model

are administrated repeatedly in each time period.

2.2 Definitions of Individual Treatment Effects

First, we define the individual primary treatment effect of a focal k-th round treatment

when the individual is prohibited to receive additional treatments after the focal round.1

1The primary individual treatment effect is referred to as the treatment-on-treated (TOT) effect in

CFR.
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Let θτ,1 denote the τ -period-after primary treatment effect of the first treatment and

θ`
k−1

τ,k the τ -period-after primary treatment effect of the k-th treatment with path of past

treatment statuses summarized by `k−1; k = 2, ..., T . We also call θ0,k the immediate

primary treatment effect of the k-th round treatment and θτ,k the longer-term primary

treatment effect when τ ≥ 1. Let 0τ denote a τ -dimensional vector of zeros for τ ≥ 1.

Then

θ0,1 = Y1(1)− Y1(0), θτ,1 = Y1+τ ((1,0τ ))− Y1+τ ((0,0τ )),

θ`
k−1

0,k = Yk((`
k−1, 1))− Yk((`k−1, 0)),

θ`
k−1

τ,k = Yk+τ ((`k−1, 1,0τ ))− Yk+τ ((`k−1, 0,0τ )), for k ≥ 2, τ ≥ 1. (2.3)

Notice that differences of some pairs of potential outcomes, such as Y2((1, 1)) −

Y2((0, 1)) and Y2((1, 0)) − Y2((0, 1)), are not defined by equation (2.3). The following

lemma shows that such differences could be represented by primary treatment effects.

Lemma 2.1 The difference of any pair of potential outcomes could be represented by

linear combinations of primary individual treatment effects defined in equation (2.3).

In the context of nonparametric RD identification, the above lemma implies that if

average primary treatment effects for a set of marginal individuals are identified, any

other average treatment effects for the same set of marginal individuals are identified.

It is important to distinguish primary treatment effects defined above from the total

effect concept in Heckman et al. (2016), also called the intent-to-treat effect in Cellini

et al. (2010). Instead of prohibiting treatment take-up after the focal k-th round, total

effects do not restrict treatment status in periods after the focal k-th round. For example,

θ̃1,1 = Y2((1, 0))(1−D2(1)) + Y2((1, 1))D2(1)− [Y2((0, 0))(1−D2(0)) + Y2((0, 1))D2(0)],

and θ̃d11,2 = Y3((d1, 1, 0))(1 − D3((d1, 1)) + Y3((d1, 1, 1))D3((d1, 1)) − Y3((d1, 0, 0))(1 −

D3((d1, 0))− Y3((d1, 0, 1))D3((d1, 0)), for d1 = 0, 1.

More generally, let θ̃`
k−1

τ,k be the τ -period-after individual total treatment effect of the

k-th round treatment with path of past treatments summarized by `k−1. Then

θ̃τ,1 = Ỹ1+τ (1)− Ỹ1+τ (0), θ̃`
k−1

τ,k = Ỹk+τ ((`k−1, 1))− Ỹk+τ ((`k−1, 0)), (2.4)
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where Ỹk+τ (`k), for k = 1, 2, ... and τ = 0, 1, ..., is a quasi-potential outcome that fixes

the first k rounds of treatment status at `k ∈ Lk but does not put any restrictions on

treatment statuses after the k-th round. Specifically,

Ỹk+τ (`k) =
∑
η∈Lτ

Yk+τ ((`k, η))D(k+1):(k+τ)((`
k, η)),

where {Dl:l′(`
k) = 1} ⇔ {Dl(`

k
1:(l−1)) = `kl , Dl+1(`k1:l) = `kl+1, ..., Dl′(`

k
1:(l′−1)) = `kl′}. It is

easy to see that when τ = 0, quasi-potential outcomes are the same as usual potential

outcomes, implying that immediate total effects defined in (2.4) are the same as immedi-

ate primary effects defined in (2.3). When τ ≥ 1, quasi-potential outcomes are different

from classic potential outcomes. Only treatment statuses in the first k rounds are fixed

in Ỹk+τ (d), regardless of the value of τ . Therefore, Ỹk+τ (`k), although documenting the

(k+τ)-th period outcome could also be viewed as a classic potential k-th period outcome.

Next, we define primary first-stage effects and total first-stage effects similar to pri-

mary treatment effects and total treatment effects. Let ητ,1 and η`
k−1

τ,k be the primary

first-stage effects and η̃τ,1 and η̃`
k−1

τ,k be the total first-stage effects. For τ ≥ 0,

ητ,1 = D2+τ ((1,0τ ))−D2+τ ((0,0τ )),

η̃τ,1 = D̃2+τ (1)− D̃2+τ (0),

where (`,0τ ) = ` if τ = 0. For τ ≥ 0, k ≥ 2, and `k−1 ∈ Lk−1,

η`
k−1

τ,k = Dk+1+τ ((`k−1, 1,0τ ))−Dk+1+τ ((`k−1, 0,0τ )),

η̃`
k−1

τ,k = D̃k+1+τ ((`k−1, 1))− D̃k+1+τ ((`k−1, 0)),

where D̃k+1+τ (`k−1) =
∑

η∈Lτ Dk+1+τ ((`k, η))D(k+1):(k+τ)((`
k, η)). These definitions will

be used later in the paper to identify longer-term average primary treatment effects.

2.3 Identification under Smoothness Conditions Only

This section discusses what kinds of average treatment effect concepts can be identified

with smoothness conditions alone. Let Nε = (−ε, ε) for some ε > 0. The following

assumption specifies classic RD-type smoothness conditions for our dynamic framework.

Assumption 2.1 There exists an ε > 0, such that
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1. Z1 is continuous in z1 ∈ Nε with P [Z1 ≥ 0] ∈ (0, 1);

2. for τ = 0, 1, ..., T − 1, E[Yτ+1(`τ+1)|D(`τ+1) = 1, Z1 = z1] is continuous in z1 ∈ Nε

for all `τ+1 ∈ Lτ+1.

3. P [D(`T ) = 1|Z1 = z1] is continuous in z1 ∈ Nε for all `T ∈ LT .

Assumption 2.1 requires smoothness of average potential outcomes and average poten-

tial treatment decisions around the first-round running variable cutoff. Since D(.) is the

path indicator and Assumption 2.1.3 is for all paths of treatment statuses, Assumption 2.1

implies, for example, continuity of P [D(`k) = 1|Z1 = z1] and E[Dk+1(`k)|D(`k) = 1, Z1 =

z1] as well, for all k = 1, 2, ...,K and `k ∈ Lk. The assumption also implies smoothness

of average quasi-potential outcomes and quasi-potential treatment decisions.

As is discussed in the introduction, τ -period-after average total effects could be iden-

tified under smoothness conditions alone, for all τ = 0, 1, ..., T . When the focal treatment

is the first-round treatment, under Assumption 2.1,

E[θ̃τ,1|Z1 = 0] = lim
z1↘0

E[Yτ+1|Z1 = z1]− lim
z1↗0

E[Yτ+1|Z1 = z1].

Assumption 2.1 could be extended to condition on the k-th round running variable.

We state this extension in Assumption A.1 in the Online Appendix. When the focal

treatment is the k-th-round treatment, under Assumption A.1,

E[θ̃`
k−1

τ,k |D(`k−1) = 1, Zk = 0]

= lim
zk↘0

E[Yτ+k|D(`k−1) = 1, Zk = zk]− lim
zk↗0

E[Yτ+k|D(`k−1) = 1, Zk = zk].

Since immediate primary treatment effects and immediate total treatment effects are

the same, the above results imply that E[θ0,1|Z1 = 0] and E[θ`
k−1

0,k |D(`k−1) = 1, Zk =

0] are identified. Assumption 2.1 alone, however, cannot identify longer-term average

primary treatment effects, which would be the focus of the rest of the paper. On the

other hand, in the special setting of having the only treatment administrated after all

rounds of RD eligibility tests, smoothness conditions alone could identify local average

treatment effects (LATE) for complies, given the fuzzy RD interpretation of the model

discussed at the end of Section 2.1.
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2.4 Identification under Treatment Effect Homogeneity

As is discussed in the introduction, the seminal study of CFR proposes a recursive identi-

fication strategy for longer-term primary treatment effects in dynamic RD models using

parametric RD regressions. This section formalizes the recursive identification result in

CFR under the potential outcome framework. The identification uses a key assumption

of treatment effect homogeneity in addition to classic RD-type smoothness conditions.

CFR labels individual treatment effects only by τ , the number of periods between

outcome variables and the focal treatment. Under the potential outcome framework, this

implies a key assumption of treatment effect homogeneity. Specifically,

θ0 = Y1(1)− Y1(0) = Y2((0, 1))− Y2((0, 0)) = Y2((1, 1))− Y2((1, 0)) =

= Y3((0, 0, 1))− Y3((0, 0, 0)) = ...

θ1 = Y2((1, 0))− Y2((0, 0)) = Y3((0, 1, 0))− Y3((0, 0, 0))

= Y3((1, 1, 0))− Y3((1, 0, 0)) = ...

... (2.5)

The simplification is restrictive. For example, it requires that for each individual,

the individual treatment effect of the first-round treatment is the same as that of the

k-th-round treatment; k ≥ 2. The simplification also implies that rankings of individual

treatment effects remain the same across different rounds of treatments and, therefore, is

even stronger than the condition of rank invariance (e.g., Heckman et al., 1997 and Dong

and Shen, 2018) across treatment effects. The simplification also assumes that individual

treatment effects are path independent.

In addition to the restrictions discussed above, the recursive identification strat-

egy in CFR also requires individual treatment effects to be homogeneous across in-

dividuals so that θτ are constants for all τ ≥ 0. Let πk = limz1↘0E[Dk+1|Z1 =

z1] − limz1↗0E[Dk+1|Z1 = z1] be the jump in the (k + 1)-th round treatment take-

up rate among marginal individuals of the first-round RD; π0 = 1, πk ∈ [−1, 1] for k ≥ 1.

The following Lemma summarizes the CFR resursive identification strategy.

Lemma 2.2 Under Assumption 2.1, the treatment effect homogeneity restriction in equa-

tion (2.5), and the assumption that θ0, θ1, ... are fixed constants, the following recursive
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identification result holds:

t−1∑
τ=0

θτ · πt−1−τ = lim
z1↘0

E[Yt|Z1 = z1]− lim
z1↗0

E[Yt|Z1 = z1], for t = 1, 2, ..., T. (2.6)

Or,

θ0 = lim
z1↘0

E[Y1|Z1 = z1]− lim
z1↗0

E[Y1|Z1 = z1],

θ1 + θ0 · π1 = lim
z1↘0

E[Y2|Z1 = z1]− lim
z1↗0

E[Y2|Z1 = z1],

θ2 + θ1 · π1 + θ0 · π2 = lim
z1↘0

E[Y3|Z1 = z1]− lim
z1↗0

E[Y3|Z1 = z1],

....

Lemma 2.2 is proved by the method of induction, and a formal proof is given in the

online appendix. Intuitively, if barely passing the first-round RD cutoff and receiving the

first-round treatment does not change an individual’s probability of taking treatments in

later rounds, these later treatments would not contribute to the threshold discontinuity

in the t-th period outcome. However, if barely passing the first-round RD cutoff changes

an individual’s probability of taking later round treatments, either through changed RD

participation rate or running variables in subsequent rounds, observed discontinuity in

the t-th period average outcome at the first-round RD cutoff would also include effects

from treatments of later round.

The recursive identification strategy in Lemma 2.2 relies heavily on the treatment

effect homogeneity simplification. Take the simplest case of t = 2 as an example:

lim
z1↘0

E[Y2|Z1 = z1]− lim
z1↗0

E[Y2|Z1 = z1]

= lim
z1↘0

E[Y2(1, 0)|Z1 = z1]− lim
z1↗0

E[Y2(0, 0)|Z1 = z1]

+ lim
z1↘0

E[(Y2(1, 1)− Y2(1, 0))D2(1)|Z1 = z1]− lim
z1↗0

E[(Y2(0, 1)− Y2(0, 0))D2(0)|Z1 = z1]

=E[θ1|Z1 = 0] + θ0 ·
(

lim
z1↘0

E[D2|Z1 = z1]− lim
z1↗0

E[D2|Z1 = z1]

)
=θ1 + θ0 · π1.

The second last equality holds because individual treatment effects are non-random. The

recursiveness in the identification system relies on the assumption that the τ -period-after

effects are the same across treatments of different rounds.
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The strength of the treatment effect homogeneity restriction can also be revealed by

the following over-identification result. Under updated smoothness conditions in Assump-

tion A.1 stated in the online appendix and the treatment effect homogeneity restriction

discussed above, we can show that, for s = 1, 2, ..., T − k − 1,

s∑
τ=0

θτ · ps−τ = lim
zk+1↘0

E[Yk+1+s|Zk+1 = zk+1]− lim
zk+1↗0

E[Yk+1+s|Zk+1 = zk+1],

(2.7)

where ps = limzk+1↘0E[Dk+1+s|Zk+1 = zk+1] − limzk+1↗0E[Dk+1+s|Zk+1 = zk+1]. De-

tailed derivations of (2.7) are given in the online appendix. Equation (2.7) implies that

the same set of θ0, θ1,..., could be identified even when a first k period of data are set

aside, for any k = 1, 2, .... The result therefore provides many testable implications for

the recursive CFR identification strategy.

Last but not least, it is worth mentioning that the recursive CFR identification strat-

egy could be extended to the case where individual primary treatment effects are random

but still path independent, mean independent of treatment decisions in subsequent rounds

after conditioning on additional covariates, and have the same conditional means across

different rounds of treatments. However, such assumptions could still be too strong in

empirical applications. As a result, in the next section, we look into identifying longer-

term average primary treatment effects under weaker identifying assumptions.

3 Identification under Treatment Effect Heterogeneity

In this section, we study the dynamic RD model under the general setting of treatment

effect heterogeneity and propose a new identification strategy for average primary treat-

ment effects. We focus on identifying the average primary treatment effects of the first

round treatment under weaker assumptions than those discussed in Section 2.4. The

proposed identification strategy could also be extended to distributional effects or aver-

age primary effects of the k-th round treatment conditional on past treatment statuses.

In the rest of the paper, we will use ATE to refer to the average primary treatment

effect and AITTE to refer to the average total treatment effect, also called the average

intent-to-treat effect in CFR. Although ATEs and AITTEs, such as E[θ`
k−1

τ,k |Z1 = 0] and
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E[θ̃`
k−1

τ,k |Z1 = 0], depend on τ , k, and `k−1 and are for marginal individuals only, we will

often refrain from iterating these details and just use ATE and AITTE for brevity.

Under smoothness conditions, all τ -period-after AITTEs are identified; τ ≥ 0. When

τ = 0, the immediate AITTE is the same as the immediate ATE. When τ ≥ 1, the

τ -period-after AITTE of the first-round treatment could be decomposed to the τ -period-

after ATE of the first-round treatment and many other shorter-term AITTEs of later

treatments on the treated.2 Mathematically, under Assumption 2.1,

E[θ̃τ,1|Z1 = 0]

= lim
z1↘0

E[Yτ+1|Z1 = z1]− lim
z1↗0

E[Yτ+1|Z1 = z1]

=E[θτ,1|Z1 = 0]

+

τ−1∑
s=0

E[θ̃
(1,0τ−1−s)
s,τ+1−s |Dτ+1−s(1,0τ−1−s) = 1, Z1 = 0]P [Dτ+1−s(1,0τ−1−s) = 1|Z1 = 0]

−
τ−1∑
s=0

E[θ̃
(0,0τ−1−s)
s,τ+1−s |Dτ+1−s(0,0τ−1−s) = 1, Z1 = 0]P [Dτ+1−s(0,0τ−1−s) = 1|Z1 = 0].

(3.1)

For example, for τ = 1, 2, equation (3.1) implies that

lim
z1↘0

E[Y2|Z1 = z1]− lim
z1↗0

E[Y2|Z1 = z1]

=E[θ1,1|Z1 = 0] + E[θ̃1
0,2|D2(1) = 1, Z1 = 0] · lim

z1↘0
P [D2 = 1|Z1 = z1]

− E[θ̃0
0,2|D2(0) = 1, Z1 = 0] · lim

z1↗0
P [D2 = 1|Z1 = z1], (3.2)

2The τ -period-after ATE of the first-round treatment could also be decomposed into the τ -period-after

ATE of the first-round treatment and many other shorter-term ATEs of later treatments conditional on

paths of past treatment statuses. Specifically,

E[θ̃τ,1|Z1 = 0] = lim
z1↘0

E[Yτ+1|Z1 = z1]− lim
z1↗0

E[Yτ+1|Z1 = z1]

=E[θτ,1|Z1 = 0]

+

τ−1∑
s=0

∑
`∈Lτ−1−s

E[θ
(1,`)
s,τ+1−s|D2:(τ+1−s)(1, `, 1) = 1, Z1 = 0]P [D2:(τ+1−s)(1, `, 1) = 1|Z1 = 0]

−
τ−1∑
s=0

∑
`∈Lτ−1−s

E[θ
(0,`)
s,τ+1−s|D2:(τ+1−s)(0, `, 1) = 1, Z1 = 0]P [D2:(τ+1−s)(0, `, 1) = 1|Z1 = 0]

where we abuse the notation and let (d1, `
0) = d1.
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and

lim
z1↘0

E[Y3|Z1 = z1]− lim
z1↗0

E[Y3|Z1 = z1]

=E[θ1,1|Z1 = 0] + E[θ̃1
1,1|D2(1) = 1, Z1 = 0]P [D2(1) = 1|Z1 = 0]

− E[θ̃0
1,1|D2(0) = 1, Z1 = 0]P [D2(0) = 1|Z1 = 0]

+ E[θ̃
(1,0)
0,3 |D3(1, 0) = 1, Z1 = 0]P [D3(1, 0) = 1|Z1 = 0]

− E[θ̃
(0,0)
0,3 |D3(0, 0) = 1, Z1 = 0]P [D3(0, 0) = 1|Z1 = 0], (3.3)

respectively. Note that θ̃d10,2 in (3.2) and θ̃
(d1,0)
0,3 in (3.3) are equal to θd10,2 and θ

(d1,0)
0,3 ,

respectively, for d1 = 0, 1. We will use this decomposition to identify E[θτ,1|Z1 = 0] for

τ = 1, 2, .... in the following sections.

3.1 One-period-after ATE

We first identify the one-period-after ATE, or E[θ1,1|Z1 = 0], with a conditional mean

independence assumption (CIA) that requires mean independence of potential outcomes

and the second-round running variable among observationally equivalent individuals who

choose to participate in the second-round RD. Recall that to identify E[θ1,1|Z1 = 0],

CFR assumes θ0 ≡ θ1
0,2 = θ0

0,2 = θ0,1 and that individual immediate treatment effect

θ0 is either fixed constant or independent of the second-round treatment decision. The

following assumption that we make is substantially weaker. Let X denote confounding

covariates with support X .

Assumption 3.1 (CIA - Benchmark) There exists an ε > 0 such that E[Y2(d1, 0)|X =

x, Z2(d1) = z2, S2(d1) = 1, Z1 = z1] = E[Y2(d1, 0)|X = x, S2(d1) = 1, Z1 = z1], for all

x ∈ X , z2 ∈ R, d1 = 0, 1 and all z1 ∈ Nε.

Assumption 3.1 does not restrict the relationship among θ1
0,2, θ0

0,2, and θ0,1. It does

not impose any restriction on the endogeneity of the second-round RD participation

indicator, either. In addition, Assumption 3.1 only involves two potential second-period

outcomes with no treatment in the second round. This distinction could make a big

difference in applied research. For example, in the empirical application in Section 6,

it would be a strong assumption to require the potential expenditure associated with
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second-round school bond authorization to be mean independent of the potential vote-

share since detailed terms of school bond measures could affect both. Assuming mean

independence between the potential outcome with no second-round treatment and the

running variable is much weaker.

It is worthwhile to point out that the covariate X in Assumption 3.1 could be pre-RD

individual characteristics, but could also include lagged potential outcome Y1(d1) since

Y1(d1) is realized before both S2(d1) and Z2(d1). If Y2(d1, 0) = ρ · Y1(d1) + u follows an

AR(1) process with random shock u, Assumption 3.1 is clearly satisfied with X = Y1(d1).

Assumption 3.1 follows the idea in Angrist and Rokkanen (2015) for extrapolating

RD effects away from the running variable cutoff in a classic one-period RD setting. In

addition to Assumption 3.1, we also need a stronger version of the smoothness conditions

for each subpopulation defined by X. Similar to Assumption 3.1, the next Assumption

is tailored for the identification of the one-period-after ATE.

Assumption 3.2 (Smoothness - Benchmark) There exists an ε > 0, such that

1. Z1 is continuous in z1 ∈ Nε with P [Z1 ≥ 0] ∈ (0, 1);

2. E[D2(d1)|X = x, S2(d1) = 1, Z1 = z1] ∈ (0, 1) is continuous in z1 ∈ Nε for all

d1 = 0, 1 and x ∈ X ;

3. E[Y2(d1, d2)|X = x,D2(d1) = d2, Z1 = z1] is continuous in z1 ∈ Nε for all d1, d2 =

0, 1 and x ∈ X .

Under Assumption 3.2, it is easy to see that E[Y2(1, 1)|D2(1) = 1, Z1 = 0] in equa-

tion (3.2) could be identified as limz1↘0E[Y2|D2 = 1, Z1 = z1]. Meanwhile, under As-

sumptions 3.1 and 3.2,

E[Y2(1, 0)|D2(1) = 1, Z1 = 0]

= lim
z1↘0

E[E[Y2(1, 0)|X,S2(1) = 1, Z2(1) ≥ 0, Z1 = z1]|S2(1) = 1, Z2(1) ≥ 0, Z1 = z1]

= lim
z1↘0

E[E[Y2(1, 0)|X,S2(1) = 1, Z2(1) < 0, Z1 = z1]|S2(1) = 1, Z2(1) ≥ 0, Z1 = z1]

= lim
z1↘0

E[E[Y2|X,S2 = 1, D2 = 0, Z1 = z1]|D2 = 1, Z1 = z1].
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Combining results above completes the identification of E[θ1
0,2|D2(1) = 1, Z1 = 0]; simi-

larly, E[θ0
0,2|D2(0) = 1, Z1 = 0] could be identified. The identification of E[θ1,1|Z1 = 0]

then follows.

When the dimension of X is large, a propensity score version of the above identifica-

tion strategy would be more practical. Let

λd1(x) = P [D2(d1) = 1|X = x, S2(d1) = 1, Z1 = 0], d1 = 0, 1, (3.4)

be the potential propensity scores of passing the second-round RD cutoff among marginal

individuals who are at the first-round cutoff and would participate in the second-round

eligibility test given the first-round treatment status d1. The potential propensity scores

are identified by

λ0(x) = lim
z1↗0

P [D2 = 1|X = x, S2 = 1, Z1 = z1],

λ1(x) = lim
z1↘0

P [D2 = 1|X = x, S2 = 1, Z1 = z1].

Under Assumptions 3.1 and 3.2, one can show that

E[θ0
0,2|D2(0) = 1, Z1 = 0] = E[θ0

0,2|S2(0) = 1, Z2(0) ≥ 0, Z1 = 0]

= lim
z1↗0

E

[
E

[(
Y2D2

λ0(X)
− Y2(1−D2)

1− λ0(X)

) ∣∣X,S2 = 1, Z1 = z1

] ∣∣S2 = 1, Z2 ≥ 0, Z1 = z1

]
= lim
z1↗0

E

[
Y2S2(D2 − λ0(X))

(1− λ0(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
, (3.5)

and similarly,

E[θ1
0,2|D2(1) = 1, Z1 = 0] = lim

z1↘0
E

[
Y2S2(D2 − λ1(X))

(1− λ1(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
. (3.6)

Plugging equations (3.5) and (3.6) into equation (3.2), we have the following lemma.

Lemma 3.1 Under Assumptions 3.1 and 3.2, the one-period-after ATE of the first-round

treatment is identified as

E[θ1,1|Z1 = 0] = α1 − α0, with

α1 ≡ lim
z1↘0

E

[
Y2 −

Y2S2(D2 − λ1(X))

1− λ1(X)

∣∣Z1 = z1

]
,

α0 ≡ lim
z1↗0

E

[
Y2 −

Y2S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
.
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The proof is given in the online appendix. The lemma identifies the one-period-

after ATE of the first-round treatment. As is discussed at the beginning of the section,

identification results in Lemma 3.1 could be extended, given strengthened smoothness and

CIA conditions, to distributional treatment effects or ATEs of the k-th round treatment

conditional on the path of past treatment statuses. For example, the strategy could be

applied to identify E[θd10,2|S2(d1) = 1, Z1 = 0], for d1 = 0, 1, provided that a stronger

version for Assumption 3.1 with all four second-round potential outcomes holds.

Note that if the CIA condition in Assumption 3.1 is relaxed to a monotonicity condi-

tion as is stated in the following, identification results in equations (3.5) and (3.6) become

upper bounds of E[θ0
0,2|D2(d1) = 1, Z1 = 0] and E[θ1

0,2|D2(d1) = 1, Z1 = 0], respectively.

Assumption 3.3 (Monotone 1 - Benchmark) E[Y2(d1, 0)|X = x, Z2(d1) = z2, S2(d1) =

1, Z1 = z1] is (weakly) monotonically increasing in z2 for all x ∈ X and z1 ∈ Nε.

Assumption 3.3 assumes that the potential second-round running variable has a mono-

tonic relationship with the conditional mean of potential second-round outcomes with no

second-round treatment. It nests the CIA condition in Assumption 3.1. Under Assump-

tion 3.3, for d1 = 0, 1,

E[θd10,2|D2(d1) = 1, Z1 = 0]

=E[Y2(d1, 1)|D2(d1) = 1, Z1 = 0]− E[Y2(d1, 0)|D2(d1) = 1, Z1 = 0]

≤E[Y2(d1, 1)|D2(d1) = 1, Z1 = 0]

− E[E[Y2(d1, 0)|X,S2(d1) = 1, Z2(d1) < 0, Z1 = 0|S2(d1) = 1, Z2(d1) ≥ 0, Z1 = 0]

=αd1 ,

where αd1 is defined in Lemma 3.1. The upper bounds of E[θd10,2|D2(d1) = 1, Z1 = 0]

alone, for d1 = 0, 1, cannot be used to bound the one-period-after ATE E[θ1,1|Z1 = 0].

For this purpose, we introduce a second monotonicity condition as following.

Assumption 3.4 (Monotone 2 - Benchmark) E[θd10,2|X = x, Z2(d1) = z2, S2(d1) =

1, Z1 = z1] is (weakly) monotonically increasing in z2 ∈ R for all x ∈ X and z1 ∈ Nε.
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Assumption 3.4 assumes that the potential second-round running variable has a

monotonic relationship with the immediate second-period ATE. When the continuity

conditions in Assumptions 2.1 are extended to conditional means of potential outcomes

conditional on both Z1 and Z2, it is easy to show that under Assumption 3.4,

E[θ0
0,2|D2(0) = 1, Z1 = 0] ≥ E[θ0

0,2|S2(0) = 1, Z2(0) = 0, Z1 = 0]

= lim
z1↗0,z2↘0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1]− lim
z1↗0,z2↗0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1]

≡β0,

E[θ1
0,2|D2(1) = 1, Z1 = 0] ≥ E[θ1

0,2|S2(1) = 1, Z2(1) = 0, Z1 = 0]

= lim
z1↘0,z2↘0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1]− lim
z1↘0,z2↗0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1]

≡β1.

Combining the inequalities above and the decomposition stated in equation (3.2), we

bound the one-period-after ATE E[θ1,1|Z1 = z1] as

α1 −
(

lim
z1↗0

E[Y2|Z1 = z1]− β0 · lim
z1↗0

P [D2 = 1|Z1 = z1]

)
≤E[θ1,1|Z1 = z1]

≤
(

lim
z1↘0

E[Y2|Z1 = z1]− β1 · lim
z1↘0

P [D2 = 1|Z1 = z1]

)
− α0.

3.2 Longer-term ATEs

The identification strategy discussed above for one-period-after ATE could be extended

to other longer-term ATEs of the first-round treatment with additional assumptions.

Although the previous section does not impose any restriction on the path-dependency

of potential random variables, for the identification of longer-term ATEs we introduce a

new Markovian-type condition.

Assumption 3.5 (Markovian) For all k = 3, 4, ...,K, τ = 0, ...,K − k and z1 ∈ Nε,

we have that for all `k−2 ∈ Lk−2 and d = 0, 1,

1. µ̃dτ ≡ E
[
θ̃

(`k−2,d)
τ,k

∣∣Dk(`
k−2, d) = 1, Z1 = z1

]
= E

[
θ̃dτ,2
∣∣D2(d) = 1, Z1 = z1

]
,

2. ν̃dτ ≡ E
[
η̃

(`k−2,d)
τ,k

∣∣Dk(`
k−2, d) = 1, Z1 = z1

]
= E

[
η̃dτ,2
∣∣D2(d) = 1, Z1 = z1

]
.
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Assumption 3.5 requires that different τ -period-after AITTEs and average total first-

stage effects on the treated have the same conditional means as long as the treatment

statuses in the period right before the focal treatment are the same.3 The assumption can

be restrictive, but it reduces the dimension of unknown treatment effects involved in iden-

tification since the cardinal count of individual treatment effects increases exponentially

with the number of time periods if no further restriction is imposed.4 Assumption 3.5 is

still substantially weaker than the complete path-independence condition used in CFR.

Assumption 3.6 (Smoothness) There exists an ε > 0 such that for all τ ≥ 0,

1. Z1 is continuous in z1 ∈ Nε with P [Z1 ≥ 0|X = x, S = 1] ∈ (0, 1) for all x ∈ X ;

2. E[D2(d1)|X = x, S2(d1) = 1, Z1 = z1] is continuous in z1 ∈ Nε for all d1 = 0, 1

and x ∈ X ;

3. E[Ỹ2+τ (d1, d2)|X = x,D2(d1) = d2, Z1 = z1] and E[D̃3+τ (d1, d2)|X = x,D2(d1) =

d2, Z1 = z1] are continuous in z1 ∈ Nε for all d1, d2 = 0, 1 and x ∈ X .

Assumption 3.6 reduces to Assumption 3.2 when τ = 0. For τ ≥ 1, recall that

both the quasi-potential outcome Ỹ2+τ (d1, d2) and the quasi-potential treatment decision

D̃3+τ (d1, d2) could be viewed as a classic second-period potential outcome; d1, d2 = 0, 1.

Therefore, Assumption 3.6 is essentially a reiteration of the smoothness conditions in

Assumption 3.2.

Combining Assumptions 3.5 and 3.6 with the decomposition result in equation (3.1),

3In fact, for the identification strategy described in this section, only d = 0 is required. However, it

might be hard to find an empirical situation where conditions in Assumption 3.5 hold with d = 0 but not

with d = 1, so we do not make such a distinction in Assumption 3.5.
4For example, for each τ = 0, 1, ...,K − k, without Assumption 3.5, the k-th round treatment would

have 2k−1 different τ -period-after individual primary or total effects. When Assumption 3.5 is imposed,

the k-th round treatment would only have 2 different τ -period-after individual primary or total effects.
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we have that for τ ≥ 1,

E[θτ,1|Z1 = 0] = lim
z1↘0

E[Yτ+1|Z1 = z1]− lim
z1↗0

E[Yτ+1|Z1 = z1]

− µ̃1
τ−1 · lim

z1↘0
P [D2 = 1|Z1 = z1] + µ̃0

τ−1 · lim
z1↗0

P [D2 = 1|Z1 = z1]

−
τ−2∑
s=0

µ̃0
s · E[ητ−1−s,1|Z1 = 0] (3.7)

and

E[ητ,1|Z1 = 0] = lim
z1↘0

E[Dτ+2|Z1 = z1]− lim
z1↗0

E[Dτ+2|Z1 = z1]

− ν̃1
τ−1 · lim

z1↘0
P [D2 = 1|Z1 = z1] + ν̃0

τ−1 · lim
z1↗0

P [D2 = 1|Z1 = z1]

−
τ−2∑
s=0

ν̃0
s · E[ητ−1−s,1|Z1 = 0]. (3.8)

When τ = 1, equation (3.7) reduces to

E[θ1,1|Z1 = 0] = lim
z1↘0

E[Y2|Z1 = z1]− lim
z1↗0

E[Y2|Z1 = z1]

− µ̃1
0 · lim

z1↘0
P [D2 = 1|Z1 = z1] + µ̃0

0 · lim
z1↗0

P [D2 = 1|Z1 = z1],

which is equivalent to equation (3.2). Equation (3.8) reduces to

E[η1,1|Z1 = 0] = lim
z1↘0

E[D3|Z1 = z1]− lim
z1↗0

E[D3|Z1 = z1]

− ν̃1
0 · lim

z1↘0
P [D2 = 1|Z1 = z1] + ν̃0

0 · lim
z1↗0

P [D2 = 1|Z1 = z1].

When τ = 2, equations (3.7) and (3.8) reduce, correspondingly, to

E[θ2,1|Z1 = 0] = lim
z1↘0

E[Y3|Z1 = z1]− lim
z1↗0

E[Y3|Z1 = z1]

− µ̃1
1 · lim

z1↘0
P [D2 = 1|Z1 = z1] + µ̃0

1 · lim
z1↗0

P [D2 = 1|Z1 = z1]

− µ̃0
0 · E[η1,1|Z1 = 0], and

E[η2,1|Z1 = 0] = lim
z1↘0

E[D4|Z1 = z1]− lim
z1↗0

E[D4|Z1 = z1]

− ν̃1
1 · lim

z1↘0
P [D2 = 1|Z1 = z1] + ν̃0

1 · lim
z1↗0

P [D2 = 1|Z1 = z1]

− ν̃0
0 · E[η1,1|Z1 = 0].
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To identify components in the right hand side of equations (3.7) and (3.8), we

strengthen the CIA condition using quasi-potential outcomes and treatment decisions

defined in Section 2.2. Again, when the quasi-potential outcome and the quasi-potential

treatment decision stated in the following are viewed as classic second-period potential

outcomes, the assumption below is just a reiteration of Assumption 3.1.

Assumption 3.7 (CIA) There exists an ε > 0 such that for all τ ≥ 0,

1. E[Ỹ2+τ (d1, 0)|X = x, Z2(d1) = z2, S2(d1) = 1, Z1 = z1] = E[Ỹ2+τ (d1, 0)|X =

x, S2(d1) = 1, Z1 = z0] for all x ∈ X , z2 ∈ R, d1 = 0, 1 and all z1 ∈ Nε;

2. E[D̃3+τ (d1, 0)|X = x, Z2(d1) = z2, S2(d1) = 1, Z1 = z1] = E[D̃3+τ (d1, 0)| =

x, S2(d1) = 1, Z1 = z1] for all x ∈ X , z2 ∈ R, d1 = 0, 1 and all z1 ∈ Nε.

Under Assumptions 3.6 and 3.7,

µ̃0
τ = lim

z1↗0
E

[
Y2+τS2(D2 − λ0(X))

(1− λ0(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
,

µ̃1
τ = lim

z1↘0
E

[
Y2+τS2(D2 − λ1(X))

(1− λ1(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
,

ν̃0
τ = lim

z1↗0
E

[
D3+τS2(D2 − λ0(X))

(1− λ0(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
,

ν̃1
τ = lim

z1↘0
E

[
D3+τS2(D2 − λ1(X))

(1− λ1(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
. (3.9)

Plugging into the decompositions in equations (3.7) and (3.8), we obtain a recursive

identification strategy of E[θτ,1|Z1 = 0] and E[ητ,1|Z1 = 0], for τ ≥ 1.

When τ = 1, equation (3.7) simplifies to the identification in Lemma 3.1, and equa-

tion (3.8) simplifies to

E[η1,1|Z1 = 0] = lim
z1↘0

E

[
D3 −

D3S2(D2 − λ1(X))

1− λ1(X)

∣∣Z1 = z1

]
− lim
z1↗0

E

[
D3 −

D3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
.

When τ = 2, E[θ2,1|Z1 = 0] is identified with results in (3.9) and the identification of
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E[η1,1|Z1 = 0]. Specifically,

E[θ2,1|Z1 = 0]

= lim
z1↘0

E

[
Y3 −

Y3S2(D2 − λ1(X))

1− λ1(X)

∣∣Z1 = z1

]
− lim
z1↗0

E

[
Y3 −

Y3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
− lim
z1↗0

E

[
Y2S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
/E[D2|Z1 = z1]

×
(

lim
z1↘0

E

[
D3 −

D3S2(D2 − λ1(X))

1− λ1(X)

∣∣Z1 = z1

]
− lim
z1↗0

E

[
D3 −

D3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

])
.

Similarly, E[η2,1|Z1 = 0] is identified and

E[η2,1|Z1 = 0]

= lim
z1↘0

E

[
D4 −

D4S2(D2 − λ1(X))

1− λ1(X)

∣∣Z1 = z1

]
− lim
z1↗0

E

[
D4 −

D4S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
− lim
z1↗0

E

[
D3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
/E[D2|Z1 = z1]

×
(

lim
z1↘0

E

[
D3 −

D3S2(D2 − λ1(X))

1− λ1(X)

∣∣Z1 = z1

]
− lim
z1↗0

E

[
D3 −

D3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

])
.

When τ = 3, E[θ3,1|Z1 = 0] and E[η3,1|Z1 = 0] are identified with the results in (3.9)

and the identification of E[η1,1|Z1 = 0] and E[η2,1|Z1 = 0]. The recursive identification

pattern is then clear.

The recursive identification strategy could also be extended to partially identify

E[θ̃τ,1|Z1 = 0] for τ ≥ 2 if both µ̃dτ and ν̃dτ are bounded using monotonic conditions

similar to those in Assumptions 3.3 and 3.4. We omit the details here.

4 Estimation and Inference

In this section, we propose estimation and inference procedures for the identified aver-

age effects discussed in Sections 3.1 and 3.2.5 We propose a two-step semiparametric

estimation procedure. We focus on the one-period-after ATE following the identification

in Lemma 3.1. Given the recursive nature in longer-term ATE identification, the one-

period-after ATE estimator that we focus on extends readily to longer-term ATEs. For

inference, we propose a weighted bootstrap procedure. The procedure is especially helpful

5The effects identified in Sections 2.3 and 2.4 can be estimated by conventional nonparametric RD

estimators. See, for example, Chiang et al. (2019). We omit the details.
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for longer-term ATE estimators, which include many more conditional mean expressions

when the lag between the outcome and the focal round of treatment increases.

4.1 Estimation

Assume that λ(X; z1) = P [D2 = 1|X,S2 = 1, Z1 = z1] follows a class of semiparametric

models p(X, γ(z1)), where p(., .) : X ×Γ→ R and γ(.) : R→ Γ is unknown. For example,

if p(X, γ) = L(X ′γ) with L(a) = exp(a)/(1 + exp(a)), then λ(X; z1) = exp(X′γ(z1))
1+exp(X′γ(z1)) fol-

lows a varying coefficient Logit model, nesting both parametric Logit and semiparametric

partial-linear Logit as special cases. In this section we describe estimation strategy with

a general semi-parametric propsensity score function. In Section 4.3 we provide details

with a varying coefficient Logit propsensity score model.

Let γ0 = limz1↗0 γ(z1) and γ1 = limz1↘0 γ(z1). Propensity score functions λ0(X) and

λ1(X) could be written as p(X, γ0) and p(X, γ1). In addition, let β0 = limz1↗0 γ
′(z1)

and β1 = limz1↘0 γ
′(z1) be the left and the right limits of the first-order derivative of

γ(.) at the RD cutoff. Let γ̂0, γ̂1, β̂0
FS and β̂1

FS denote estimators of γ0, γ1, β0 and β1,

correspondingly. In order to estimate the propensity score function locally at the RD

cutoff while also avoiding the “curse of dimensionality”, we propose to solve the following

maximization problem:

(γ̂1, β̂1
FS) = arg max

γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·
[
D2i log p(Xi, γ + βZ1i) + (1−D2i) log(1− p(Xi, γ + βZ1i))

]
,

(γ̂0, β̂0
FS) = arg max

γ,β

n∑
i=1

S2i1(Z1i < 0)K

(
Z1i

h

)
·
[
D2i log p(Xi, γ + βZ1i) + (1−D2i) log(1− p(Xi, γ + βZ1i))

]
,

(4.1)

where K(·) is the kernel function and h is the bandwidth.

Denote the one-period-after ATE E[θ1,1|Z1 = 0] by θ̄1,1 and its estimator by ˆ̄θ1,1.

Given the first-step propensity score estimators, θ̄1,1 could be estimated by local linear
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regressions as the following:

ˆ̄θ1,1 = α̂1 − α̂0,

(α̂1, β̂1) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[
A1
i (α, β; γ̂1)

]2
,

(α̂0, β̂0) = arg min
α,β

n∑
i=1

1(Z1i < 0)K

(
Z1i

h

)[
A0
i (α, β; γ̂0)

]2
,

where Adi (α, β; γ) = Y2i − Y2iS2i(D2i−p(Xi,γ))
1−p(Xi,γ) − α− βZ1i.

Estimators λ̂0, λ̂1, and ˆ̄θ are all consistent and asymptotically normally distributed

under proper assumptions, which will be elaborated in the next sections. In the above

estimation procedure, the bandwidth is kept the same in both steps. If the first-step

bandwidth converges to zero at a slower rate than the second-step bandwidth, asymp-

totic variance of ˆ̄θ1,1 could be simplified since the first-step estimation error would vanish

asymptotically. We propose to keep bandwidths the same in both steps for easier in-

terpretations of the empirical results. This implies that the asymptotic variance of ˆ̄θ1,1

needs to account for estimation error in the first step as well.

The two-step estimation procedure described above could be modified to estimate

E[θτ,1|Z1 = 0] for τ ≥ 2 as well. Take the two-period-after ATE as an example. Let

θ̄2,1 ≡ E[θ2,1|Z1 = 0] and recall that

θ̄2,1 = α1
1 − α0

1 − (µ̃0
nu/µ̃de) · (α1

fs − α0
fs), where

α1
1 = lim

z1↘0
E

[
Y3 −

Y3S2(D2 − λ1(X))

1− λ1(X)

∣∣Z1 = z1

]
,

α0
1 = lim

z1↗0
E

[
Y3 −

Y3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
,

α1
fs = lim

z1↘0
E

[
D3 −

D3S2(D2 − λ1(X))

1− λ1(X)

∣∣Z1 = z1

]
,

α0
fs = lim

z1↗0
E

[
D3 −

D3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
,

µ̃0
nu = lim

z1↗0
E

[
Y2S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
, µ̃de = E[D2|Z1 = z1].

All components of θ̄2,1 are conditional means of functions of observables or propensity

scores given the first-round running variable. Therefore, θ̄2,1 could be estimated by local

linear regressions once the first-step local MLE propensity score estimators are plugged

in. Estimation of more longer-term ATEs would follow similarly.
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Before proceeding to the next section, where we discuss asymptotic properties of

the proposed estimators, we note that the local MLE method used here for propensity

score estimation could be useful in other RD settings as well. For example, the varying

coefficient Logit model discussed above could be applied to estimate heterogeneous first-

stage effects in classic static fuzzy RD models.6 In addition, local MLE with other

link functions could be applied to estimate heterogeneous ATEs with binary, count, or

duration outcome variables. We leave such RD applications for future studies.

4.2 Asymptotics

Let φγ1,ni(D2i, S2i, Z1i, Xi) and φγ0,ni(D2i, S2i, Z1i, Xi) be influence functions of γ̂1 and

γ̂0, respectively, such that

√
nh(γ̂1 − γ1) =

1√
nh

n∑
i=1

φγ1,ni(D2i, S2i, Z1i, Xi) + op(1),

√
nh(γ̂0 − γ0) =

1√
nh

n∑
i=1

φγ0,ni(D2i, S2i, Z1i, Xi) + op(1).

Let φ̃α1,ni(Y2i, D2i, S2i, Z1i, Xi) and φ̃α0,ni(Y2i, D2i, S2i, Z1i, Xi) be influence functions

of infeasible estimators α̃1 and α̃0, respectively, such that

(α̃1, β̃1) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[
A1
i (α, β; γ1)

]2
,

(α̃0, β̃0) = arg min
α,β

n∑
i=1

1(Z1i < 0)K

(
Z1i

h

)[
A0
i (α, β; γ0)

]2
.

Define gradient terms O1
γ = limz1↘0E

[
∇γ
[
Y2S2(D2−p(X,γ))

1−p(X,γ)

] ∣∣
γ=γ1

∣∣∣Z1 = z1

]
and O0

γ =

limz1↗0E
[
∇γ
[
Y2S2(D2−p(X,γ))

1−p(X,γ)

] ∣∣
γ=γ0

∣∣∣Z1 = z1

]
. By the delta method, we obtain the fol-

6Let Z be the running variable in a static fuzzy RD model and c be the RD cutoff. Let D be the

treatment decision and X the covariate. Researchers are often interested in knowing how RD first-stage

or treatment effects vary with X. Hsu and Shen (2019, 2021) propose nonparametric tests for such

questions. The local MLE estimator discussed above could easily estimate conditional mean functions

such as limz↘c E[D|X = x, Z = z]− limz↗cE[D|X = x, Z = z]. A semiparametric local MLE estimator

would be more restrictive than a fully nonparametric estimator but it enjoys a faster rate of convergence

while still remains local at the RD cutoff.
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lowing influence function representation of α̂0 and α̂1 such that for d1 = 0, 1,

√
nh(α̂d1 − αd1)

=
1√
nh

n∑
i=1

(
φ̃αd1 ,ni(Y2i, S2i, D2i, Z1i, Xi)−5d1

γ · φγd1 ,ni(D2i, S2i, Z1i, Xi)
)

+ op(1)

≡ 1√
nh

n∑
i=1

φαd1 ,ni(Y2i, S2i, D2i, Z1i, Xi) + op(1). (4.2)

The influence functions would give us asymptotic limit of the one-period-after ATE

estimator ˆ̄θ1,1. The asymptotic variance of ˆ̄θ1,1 could also be estimated by

V̂11 =
1

nh

n∑
i=1

φ̂2
α1,ni(Y2i, D2i, S2i, Z1i, Xi) + φ̂2

α0,ni(Y2i, D2i, S2i, Z1i, Xi),

where φ̂αd1 ,ni(Y2i, D2i, S2i, Z1i, Xi) is the estimated version of the influence function

φαd1 ,ni(Y2i, D2i, S2i, Z1i, Xi) with all unknown parameters replaced with corresponding

estimators; d1 = 0, 1.

The analytical variance estimator of the proposed estimators could be tedious to

calculate. In applications, we propose to use a weighted bootstrap procedure first intro-

duced in Ma and Kosorok (2005) to simulate the limiting distribution of the proposed

one-period-after ATE estimator.

Let {Wi}ni=1 be a sequence of pseudo random variables that is independent of the

sample path with both mean and variance equal to one. Define the weighted bootstrap

estimator for θ̄1,1 as

ˆ̄θw1,1 = α̂1,w − α̂0,w,

(α̂1,w, β̂1,w) = arg min
α,β

n∑
i=1

Wi · 1(Z1i ≥ 0)K

(
Z1i

h

)[
A1
i (α, β; γ̂1,w)

]2
,

(α̂0,w, β̂0,w) = arg min
α,β

n∑
i=1

Wi · 1(Z1i < 0)K

(
Z1i

h

)[
A0
i (α, β; γ̂0,w)

]2
,
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where

(γ̂1,w, β̂1,w
FS ) = arg max

γ,β

n∑
i=1

Wi · S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·
[
D2i log p(Xi, γ + βZ1i) + (1−D2i) · log(1− p(Xi, γ + βZ1i))

]
,

(γ̂0,w, β̂0,w
FS ) = arg max

γ,β

n∑
i=1

Wi · S2i1(Z1i < 0)K

(
Z1i

h

)
·
[
D2i log p(Xi, γ + βZ1i) + (1−D2i) · log(1− p(Xi, γ + βZ1i))

]
.

Following Ma and Kosorok (2005),
√
nh(ˆ̄θw1,1− ˆ̄θ1,1) and

√
nh(ˆ̄θ1,1−θ̄1,1) have the same

limiting distribution under suitable conditions. We will give out detailed conditions in

the next section using a varying coefficient Logit propensity score model in the first-step.

4.3 Asymptotics based on First Step Varying Coefficient Logit Model

In this section, we provide detailed assumptions and asymptotic properties of the pro-

posed two-step estimator using a varying coefficient Logit propensity score model in the

first-step. Let p(x, γ) = L(x′γ) with L(a) = exp(a)/(1 + exp(a)). Then

(γ̂1, β̂1
FS) = arg max

γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·
[
D2i logL(X ′i(γ + βZ1i)) + (1−D2i) log

(
1− L(X ′i(γ + βZ1i))

)]
,

(γ̂0, β̂0
FS) = arg max

γ,β

n∑
i=1

S2i1(Z1i < 0)K

(
Z1i

h

)
·
[
D2i logL(X ′i(γ + βZ1i)) + (1−D2i) log

(
1− L(X ′i(γ + βZ1i))

)]
.

The following set of assumptions states regularity conditions for the estimators.

Assumption 4.1 λ(x; z1) = L(x′γ(z1)) is the correct specification on z1 ∈ Nε for some

ε > 0.

Assumption 4.2 For j = 1, . . . , k, the j-th element of γ(z1), or γj(z1), is twice con-

tinuously differentiable on (−ε, 0) and (0, ε) with corresponding derivatives bounded for

some ε > 0.

Assumption 4.3 Density fz1(z1) is twice continuously differentiable in z1 on Nε and

fz1(z1) is bounded away from zero on Nε for some ε > 0.
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Assumption 4.4 Moment E[‖X‖3|Z1 = z1] exists and is bounded on Nε for some ε > 0.

Assumption 4.5 Assume that

1. The kernel function K(·) is a non-negative symmetric bounded kernel with support

[−1, 1];
∫
K(u)du = 1.

2. The bandwidth satisfies that h→ 0, nh3 →∞, and nh5 → 0 as n→∞.

Assumption 4.1 requires that the varying coefficient Logit model is correctly specified.

Assumption 4.2 imposes smoothness conditions on the varying coefficient in neighbor-

hoods right above and below the RD cut-off. Assumption 4.3 imposes standard smooth-

ness conditions on the density of the running variable. Assumption 4.4 imposes a moment

condition on the covariate X. Assumption 4.5 imposes standard conditions on the kernel

function and undersmoothed bandwidth. Undersmoothing is required such that the bias

of kernel estimators becomes asymptotically negligible. In practice, we recommend using

the triangular kernel (i.e., K(x) = |x| · 1(|x| < 1)) and under-smoothing the robust RD

bandwidth introduced in Calonico et al. (2014) (CCT) which is of order n1/5.

Recall that φγ0,ni(D2i, S2i, Z1i, Xi) and φγ1,ni(D2i, S2i, Z1i, Xi) are influence functions

of γ̂0 and γ̂1, respectively. Let Ik denote the k × k identity matrix and 0k×k denote the

k × k zero matrix. Under Assumptions 4.1-4.5, one can show that

φγd,ni(D2i, S2i, Z1i, Xi) =(Ik 0k×k)(∆
d)−1S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K (Z1i/h)
(
D2i − L

(
X ′i(γ

d + βdZ1i)
)) Xi

Z1iXi/h

 ,

for d = 0, 1. The following lemma then provides asymptotic properties of the first-step

local MLE estimators under a varying coefficient Logit specification. Similar results

could be derived if the λ(.; .) function follows some other semi-parametric models such

as varying coefficient Probit.
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Lemma 4.1 Suppose that Assumptions 4.1-4.5 hold, then for d = 0, 1,

√
nh

 γ̂d − γd

hβ̂dFS − hβd

 =
1√
nh

n∑
i=1

(∆d)−1S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K (Z1i/h)
(
D2i − L

(
X ′i(γ

d + βdZ1i)
)) Xi

Z1iXi/h

+ op(1),

where ∆d is given in equation (B.2) in the online appendix. In addition, for d = 0, 1,

√
nh

 γ̂d − γd

hβ̂dFS − hβd

⇒ N

(
0,
(

∆d
)−1

Ωd
(

∆d
)−1

)
,

where Ωd is given in equation (B.3) in the online appendix.

Next, we discuss asymptotic properties of α̂0 and α̂1. We first state regularity con-

ditions. Assumption 4.6 includes smoothness conditions for the infeasible two-step esti-

mators with known first-step propensity score functions. Assumption 4.7 imposes con-

ditions required to control the impact of first-stage estimation errors on the asymptotic

properties of feasible two-step estimators α̂0 and α̂1. For notational simplicity, we use

Ỹ2(γ) to denote Y2S2(D2−L(X′γ))
(1−L(X′γ)) . For d1 = 0, 1, define Ỹ d1

2 = Y2S2(D2−L(X′γd1 ))

(1−L(X′γd1 ))
and

∇γ Ỹ d1
2 = ∇γ Ỹ2(γ)|γ=γd1 . Let ∇2

γ Ỹ2(γ) be the Hessian matrix of Ỹ2(γ).

Assumption 4.6 Assume that for some ε > 0,

1. E[Y2|Z = z] and E[Ỹ 0
2 |Z1 = z1] are twice continuously differentiable on z ∈ [−ε, 0)

with bounded corresponding derivatives;

2. E[Y2|Z = z] and E[Ỹ 1
2 |Z1 = z1] are twice continuously differentiable on z ∈ [0, ε]

with bounded corresponding derivatives;

3. E[|Y2|3|Z1 = z1] is bounded for z ∈ [−ε, ε], E[|Ỹ 0
2 |3|Z1 = z1] is bounded for z ∈

[−ε, 0), and E[|Ỹ 1
2 |3|Z1 = z1] is bounded for z ∈ [0, ε].

Assumption 4.7 Assume that for some ε > 0,

1. The third moment of the j-th element of ∇γ Ỹ 0
2 , or E[|∇γ Ỹ 0

2j |3|Z1 = z1], is bounded

and twice continuously differentiable on z ∈ [−ε, 0) with bounded corresponding

derivatives;
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2. The third moment of the j-th element of ∇γ Ỹ 1
2 , or E[|∇γ Ỹ 1

2j |3|Z1 = z1], is bounded

and twice continuously differentiable on z ∈ [0, ε] with bounded corresponding deriva-

tives;

3. E[sup‖γ−γ0‖≤ε ‖∇2
γ Ỹ2(γ)‖2] and E[sup‖γ−γ1‖≤ε ‖∇2

γ Ỹ2(γ)‖2] are bounded.

The following lemma summarize the inference function representations of α̂0 and α̂1.

Lemma 4.2 Suppose that Assumptions 4.1-4.6 hold. Then
√
nh(α̂0 − αd), for d = 0, 1,

has linear representations as in (4.2) with

φ̃αd,ni(Y2i, D2i, S2i, Z1i, Xi) = (1 0) ·∆−1
z · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d ·K (Z1i/h)

·
(
Y2i − E[Y2i|Z1i]−

Y2iS2i(D2i − L(X ′iγ
d))

1− L(X ′iγ
d)

+ E
[Y2iS2i(D2i − L(X ′iγ

d))

1− L(X ′iγ
d)

∣∣∣Z1i

]) 1

Z1i/h

 ,

where ∆z = fz1(0) ·

 µz,0 µz,1

µz,1 µz,2

, 50
γ = limz↗0E

[
Y2S2(D2−1)L(X′γ0)

1−L(X′γ0))
X ′
∣∣∣Z1 = z1

]
,

51
γ = limz↘0E

[
Y2S2(D2−1)L(X′γ1)

1−L(X′γ1))
X ′
∣∣∣Z1 = z1

]
, and µz,j =

∫
u≥0 u

jK(u)du for j = 1, 2, . . ..

The influence function representation further implies that for d = 0, 1,

√
nh
(
α̂d − αd

)
d→ N(0, Vαd),

where Vα0 = limn→∞ limz1↗0 h
−1E[φ2

α0,ni(Y2i, D2i, S2i, Z1i, Xi)|Z1i = z1] and Vα1 =

limn→∞ limz1↘0 h
−1E[φ2

α1,ni(Y2i, D2i, S2i, Z1i, Xi)|Z1i = z1].

The exact expressions of Vα0 and Vα1 are tedious and, in general, we do not need

these expressions to obtain consistent estimators for Vα0 and Vα1 or to make inferences.

The next theorem summarizes asymptotic properties of ˆ̄θ1,1.

Theorem 4.1 Suppose that Assumptions 4.1-4.6 hold. Then

√
nh(ˆ̄θ1,1 − θ̄1,1) =

1√
nh

n∑
i=1

φα1,ni(Y2i, D2i, S2i, Z1i, Xi)− φα0,ni(Y2i, D2i, S2i, Z1i, Xi) + op(1)

and
√
nh(ˆ̄θ1,1 − θ̄1,1)

d→ N(0, Vα1 + Vα0).

The result in Theorem 4.1 follows directly from Lemma 4.2 as it is straightforward to

see that
√
nh(α̂0 − α0) and

√
nh(α̂1 − α1), estimated based on two mutually exclusive

subsamples of observations, are asymptotically independent.
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Asymptotic properties of longer-term ATE estimators could be derived in the same

way. Again, take the two-period-after ATE as an example. Let α̂1
1, α̂0

1, ˆ̃µ0
nu, ˆ̃µde, α̂

1
fs,

and α̂0
fs be the estimators of α1

1, α0
1, µ̃0

nu, µ̃de, α
1
fs, and α0

fs defined in equation (3.2),

and let φα1
1,ni

, φα0
1,ni

, φµ̃0nu,ni, φµ̃de,ni, φα1
fs,ni

, and φα0
fs,ni

denote their influence functions,

correspondingly. Definitions of φα1
1,ni

, φα0
1,ni

, φµ̃0nu,ni, φα1
fs,ni

, and φα0
fs,ni

are similar to

influence functions given in equation (4.2) for α̂0 and α̂1. The influence function φµ̃de,ni

for ˆ̃µde is defined as φµ̃de,ni = 1
fz1 (0)K

(
Z1i
h

)
(D2i − E[D2i|Z1i]).

Let ˆ̄θ2,1 = α̂1
1 − α̂0

1 − (ˆ̃µ0
nu/ ˆ̃µde) · (α̂1

fs − α̂0
fs) be the estimator of θ̄2,1. By the delta

method, we have that

√
nh(ˆ̄θ2,1 − θ̄2,1)

=
1√
nh

n∑
i=1

φα1
1,ni
− φα0

1,ni
−
α1
fs − α0

fs

µ̃de
φµ̃0nu,ni +

µ̃0
nu(α1

fs − α0
fs)

(µ̃de)2
φµ̃de,ni

− µ̃0
nu

µ̃de
(φα1

fs,ni
− φα0

fs,ni
) + op(1)

≡ 1√
nh

n∑
i=1

φθ̄2,1,ni(Y3i, Y2i, D3i, D2i, S2i, Z1i, Xi) + op(1).

In the right hand side of the first equality, we omit the arguments of influence func-

tions for brevity. The asymptotic normality of ˆ̄θ2,1 follows from the influence function

representation under proper smoothness conditions.

Last but not least, we provide details of the weighted bootstrap method given the

varying coefficient Logit first-stage model.

Theorem 4.2 Suppose that Assumptions 4.1-4.6 hold and that {Wi}ni=1 is a sequence of

i.i.d. pseudo random variables independent of the sample path with E[Wi] = V ar[Wi] = 1

for all i. Then,

√
nh(ˆ̄θw1,1 − ˆ̄θ1,1)

=
1√
nh

n∑
i=1

(Wi − 1)
(
φα1,ni(Y2i, D2i, S2i, Z1i, Xi)− φα0,ni(Y2i, D2i, S2i, Z1i, Xi)

)
+ op(1)

and
√
nh(ˆ̄θw1,1 − ˆ̄θ1,1)

d→ N(0, Vα1 + Vα0) conditional on sample path with probability

approaching one.

Theorem 4.2 establishes the validity of the weighted bootstrap estimator for θ̄1,1. The

proof follows Ma and Kosorok (2005) and is given in the online appendix. Although Wi
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can follow any distribution with unit mean and variance, we use, in the simulation and

empirical sessions, a discrete distribution where Wi = 0.5 or 3 with probabilities 0.8 and

0.2, respectively. The binary random variable with positive support ensures that the

weighted Logit objective functions remain globally concave.

Finally, note that the weighted bootstrap procedure could be applied to local linear

recursive CFR estimators following the identification in Section 2.4 and classic local linear

estimation. For example, let ˆ̄θw2,1 denote the weighted bootstrap estimator. Following the

same arguments as in Theorem 4.2, we can show that

√
nh(ˆ̄θw2,1 − ˆ̄θ2,1) =

1√
nh

n∑
i=1

(Wi − 1)φθ̄2,1,ni(Y3i, Y2i, D3i, D2i, S2i, Z1i, Xi) + op(1),

so the validity of weighted bootstrap would follow and we omit the details.

5 Monte Carlo simulations

In this section, we study the small sample performance of the proposed estimator ˆ̄θ1,1 for

the one-period-after ATE E[θ1,1|Z1 = 0] using Monte Carlo simulations. Small sample

performances of two-period-after and three-period-after ATE estimators are reported in

the online appendix.

We use five data-generating processes (DGPs). DGP 1 illustrates a case where the

individual treatment effects are fixed and only need to be labeled by the number of

periods between the outcome variable and the focal round of RD. DGP 2 illustrates a

case where individual treatment effects are fixed but path-dependent. DGP 3 illustrates a

case where second-round immediate treatment effects are path independent, independent

of the second-round treatment decision, and share the same distribution as the first-

round immediate effect. DGP 4 illustrates a case where the second-round immediate

treatment effect is correlated with the second-round RD participation decision. Finally,

DGP 5 illustrates a case where the potential second-period outcome is correlated with the

second-round running variable even after conditioning on covariates, RD participation,

and the first-stage running variable. The proposed estimator is valid under DGPs 1-4,

while the recursive CFR estimator is only valid under DGPs 1 and 3. Under DGP 5,

both the proposed estimator and the recursive CFR estimator are invalid.
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For all DGPs,

X ∼ U [0, 10], Z1 ∼ X − 10 ·Beta(2, 2),

uy1 ∼ N(0, 0.5), us2 ∼ N(0, 1), vz2 ∼ logis(0, 1), uy2 ∼ N(0, 0.5),

Y1(0) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uy1, Y1(1) = Y1(0) + θ0,1,

S2(0) = 1(us2 ≥ 0), S2(1) = 1(1 + us2 ≥ 0),

Z2(0) = 0.3 + 0.1X + vz2, Z2(1) = Z2(0) + (1 X)γ0, γ0 = (−0.4 − 0.2)′,

Y2(0, 0) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uy2, Y2(0, 1) = Y2(0, 0) + θ0

0,2,

Y2(1, 0) = Y2(0, 0) + θ1,1, Y2(1, 1) = Y2(0, 0) + θ1,1 + θ1
0,2.

Primary treatment effects and first-stage effects vary across DGPs.

DGP 1: θ0,1 = 0.5, θ0
0,2 = 0.5, θ1

0,2 = 0.5, θ1,1 = 0.2.

DGP 2: θ0,1 = 0.5, θ0
0,2 = 0.5, θ1

0,2 = 0.1, θ1,1 = 0.2.

DGP 3: θ0,1 = 0.5, θ0
0,2 = θ1

0,2 = 0.5 + e, θ1,1 = 0.2 + e, e ∼ U [−0.5, 0.5].

DGP 4: θ0,1 = 0.5, θ0
0,2 = 0.5 + 0.5us2, θ1

0,2 = 0.5, θ1,1 = 0.2.

DGP 5: θ0,1 = 0.5, θ0
0,2 = θ1

0,2 = 0.5 + 0.5us2 + 0.5vz2, θ1,1 = 0.2 + 0.5us2 + 0.5vz2.

Given the above potential random variables, observed random variables Y1, S2, Z2,

D2, and Y2 are defined following the potential outcome framework in Section 3. For

each DGP, we carry out 1,000 simulations and estimate both the proposed and the

recursive CFR immediate and one-period-after ATEs. Standard errors are calculated us-

ing weighted bootstrap discussed in Section 4.2. Bandwidth is chosen following h =

hCCT × n1/5−1/k, where hCCT is the CCT bandwidth for classic RD estimation of

E[θ̃1,1|Z1 = 0], and k < 5 is an under-smoothing parameter. Simulation codes are

written using R. The CCT bandwidth is calculated using R package “rdrobust”. In the

simulation and empirical sections, we report estimation and inference results with differ-

ent k choices to examine the robustness of proposed estimators with respect to bandwidth

choice. Specifically, we set k = 4.25, 4.5, and 4.75.

Table 1 reports the mean and the mean squared error (MSE) of both the proposed

and the recursive CFR one-period-after ATE estimators. As is predicted by the theory,

both estimators average around the true value in DGPs 1 and 3. The proposed estimator

has larger MSEs due to first-stage local likelihood estimation. Under DGPs 2 and 4, the
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recursive CFR estimator does not center around the true value 0.2, while the proposed

estimator still performs well. Under DGP 5, neither estimators have correct centering.

Table 1: One-period-after ATE: Proposed Estimator Vs. Recursive CFR Estimator

Proposed Estimator Recursive CFR Estimator

Mean MSE Mean MSE

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

DGP 1

n=2000 0.198 0.199 0.200 0.144 0.140 0.138 0.210 0.210 0.210 0.110 0.107 0.106

n=4000 0.200 0.201 0.202 0.100 0.097 0.096 0.203 0.204 0.204 0.080 0.078 0.077

n=8000 0.205 0.205 0.206 0.073 0.071 0.070 0.210 0.211 0.211 0.058 0.056 0.055

DGP 2

n=2000 0.197 0.199 0.200 0.144 0.140 0.139 0.142 0.143 0.143 0.116 0.113 0.111

n=4000 0.203 0.205 0.206 0.101 0.098 0.098 0.136 0.138 0.138 0.082 0.080 0.080

n=8000 0.205 0.206 0.207 0.074 0.072 0.071 0.137 0.138 0.139 0.060 0.058 0.057

DGP 3

n=2000 0.198 0.200 0.202 0.155 0.151 0.149 0.208 0.210 0.211 0.128 0.125 0.123

n=4000 0.205 0.206 0.207 0.102 0.100 0.098 0.207 0.209 0.210 0.086 0.084 0.083

n=8000 0.205 0.205 0.206 0.072 0.070 0.070 0.208 0.209 0.209 0.062 0.060 0.060

DGP 4

n=2000 0.203 0.205 0.206 0.150 0.146 0.144 0.124 0.125 0.126 0.125 0.121 0.119

n=4000 0.197 0.199 0.200 0.104 0.101 0.100 0.120 0.121 0.122 0.087 0.085 0.084

n=8000 0.202 0.203 0.203 0.075 0.072 0.072 0.121 0.122 0.123 0.062 0.060 0.059

DGP 5

n=2000 -0.044 -0.043 -0.042 0.175 0.171 0.169 0.098 0.098 0.097 0.219 0.214 0.211

n=4000 -0.044 -0.044 -0.043 0.127 0.122 0.121 0.098 0.099 0.100 0.163 0.158 0.156

n=8000 -0.050 -0.049 -0.048 0.093 0.090 0.088 0.096 0.098 0.099 0.119 0.115 0.114

Note: All Monte Carlo experiments use 1,000 simulation repetitions and weighted bootstrap with 1,000 bootstrap

repetitions.

Table 2 reports the proportion of rejections in 5% two-sided t-tests associated with

proposed immediate and one-period-after ATE estimators. The left half of the table

shows the size of the tests with the true value stated under the null. The right half of the

table shows the power of the tests with the null set incorrectly to 0.3 for the immediate

ATE and 0 for the one-period-after ATE. It is clear from the table that under DGPs 1-4

t-tests control size well under the null and have power going to one under the alternative.

Under DGP 5, the tests do not control size as the DGP violates the identifying condition

34



in Assumption 3.1. The choice of undersmoothing parameter k does not seem to affect

simulation results much under the five DGPs considered in this section.

Table 2: Two-sided T-tests with Proposed Immediate and One-period-after ATE Esti-

mators

Size Power

Immediate ATE One-period-after ATE Immediate ATE One-period-after ATE

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

DGP 1

n=2000 0.048 0.047 0.046 0.070 0.066 0.066 0.596 0.620 0.629 0.346 0.357 0.366

n=4000 0.050 0.043 0.040 0.054 0.052 0.054 0.837 0.867 0.879 0.542 0.563 0.574

n=8000 0.046 0.052 0.048 0.056 0.056 0.056 0.980 0.986 0.988 0.811 0.823 0.834

DGP 2

n=2000 0.061 0.065 0.060 0.068 0.074 0.072 0.613 0.633 0.642 0.344 0.361 0.365

n=4000 0.048 0.042 0.042 0.056 0.056 0.058 0.865 0.876 0.883 0.550 0.582 0.593

n=8000 0.051 0.057 0.059 0.064 0.064 0.068 0.978 0.984 0.990 0.814 0.835 0.847

DGP 3

n=2000 0.057 0.052 0.052 0.079 0.080 0.076 0.573 0.612 0.630 0.329 0.343 0.348

n=4000 0.051 0.054 0.054 0.058 0.058 0.054 0.842 0.868 0.878 0.531 0.565 0.572

n=8000 0.058 0.059 0.064 0.048 0.052 0.053 0.984 0.989 0.991 0.806 0.825 0.833

DGP 4

n=2000 0.049 0.049 0.048 0.074 0.082 0.076 0.572 0.594 0.613 0.366 0.377 0.381

n=4000 0.052 0.048 0.054 0.064 0.061 0.057 0.856 0.882 0.885 0.554 0.587 0.599

n=8000 0.053 0.055 0.057 0.062 0.063 0.067 0.975 0.984 0.986 0.796 0.823 0.837

DGP 5

n=2000 0.052 0.052 0.055 0.300 0.323 0.329 0.596 0.620 0.636 0.058 0.064 0.065

n=4000 0.059 0.054 0.053 0.513 0.539 0.548 0.879 0.897 0.911 0.072 0.065 0.066

n=8000 0.071 0.069 0.070 0.808 0.825 0.837 0.982 0.986 0.988 0.088 0.091 0.087

Note: All Monte Carlo experiments use 1,000 simulation repetitions and weighted bootstrap with 1,000 bootstrap

repetitions. The true value of the estimated parameter is 0.2. All t-tests use the 5% significance level.

6 Empirical Example: The Effect of CA School Bonds

This section revisits the study of local education bonds using the dataset published by

CFR. As described in CFR, school districts in California became eligible for issuing

general obligation bonds through Proposition 46 in 1984. CFR studies effects of bond

authorization on local house prices, student achievements, and other outcomes using

Californian data from 1987 to 2005. Due to data limitations, we only study two outcome
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variables: total expenditure per pupil and capital loading per pupil in a school district.

The data structure we constructed for this analysis is different from that in CFR.

Recall that CFR assumed path-independence of treatment effects and are free to pool

various bond measures of the same school districts. In contrast, our proposed identifica-

tion method allows treatment effects to be path-dependent. Therefore, we only use each

school district’s first education bond measure as the focal RD experiment. There are 614

school districts in the dataset. Restricting the sample to those with non-missing vote

share data and the first bond measure in or before 2002, we obtain a subsample of 596

school districts. Only 282 of them seeking voter approval of the first bond measure in or

after 1995 have non-missing outcome data.

Among the 596 local school districts, 74 followed up with a second bond voting in

the year after the initial trial. Among these 74 districts, 73 did not succeed in the initial

trial, and one succeeded by a substantial margin. This data pattern could be seen in the

bottom row of Figure 1. The three first-stage graphs show the effect of authorizing an

education bond in year one on the probability of authorizing another education bond in

years two, three, and four, correspondingly. No school districts that barely passed the

vote share cutoff at the first trial authorize another bond next year. The probabilities

increase slightly in years three and four. On the other hand, around 27% of school

districts that barely missed the vote share cutoff at the first trial successfully authorize

their first education bond in the next year.

Figure 1 also shows the average total effects and the histogram of the first-round

running variable. Consistent with discussions in CFR, education bonds have lagged

effects on the total expenditure and capital loading of local school districts. Combining

the information in all three rows of Figure 1, we know that the longer-term AITTEs shall

be smaller than longer-term ATEs effects in this data application since receiving the first-

round treatment decreases the probability of receiving treatments in future rounds.
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Figure 1: Average Total Effects And Histograms of the First-round Running Variable
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Note: If we calculate the CCT bandwidth for each individual figure, the average is equal to 6.23 for the three

ITT effect regressions on total expenditure per pupil, 6.16 for the three ITT effect regressions on capital loading,

and 8.66 for the three first-stage ITT effect regressions. To facilitate interpretation of the figures, we take an

average and use bandwidth 7 across all nine graphs so that results are comparable across graphs. As stated in

the paper, the sample size is 596 for the first-stage analysis and 282 for the two outcomes due to missing data.
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Table 3 reports nonparametric local linear estimation results of ATEs and average

primary first-stage effects following the recursive CFR identification strategy. Three-

period-after average primary first-stage effects are not reported because the identification

involves treatment decisions of the fifth period, which is missing for some school districts

in our subsample. The estimates reported in the table are somewhat larger than the

parametric recursive estimates reported in Table 4 of Cellini et al. (2010). This difference

could be due to the difference between parametric vs. local linear RD estimation strategies

or the fact that we only use the first school bond measure of each school district as the

focal treatment. Inference of both recursive CFR and proposed two-step estimators is

carried out with weighted bootstrap.

Table 3: ATEs and Average Primary First-stage Effects – Nonparametric CFR

Immediate One-period-after Two-period-after Three-period-after

k=4.25 4.5 4.25 4.5 4.25 4.5 4.25 4.5

Total expenditure per pupil, 282 school districts

775 685 1, 391∗ 1, 313∗ 2, 027 1, 990 3, 616∗∗ 3, 702∗∗

(604) (545) (828) (779) (1, 301) (1, 232) (1, 792) (1, 708)

Capital loading per pupil, 282 school districts

279 200 459∗∗ 405∗∗ 981∗∗∗ 932∗∗∗ 2, 400∗∗ 2, 407∗∗∗

(215) (186) (190) (175) (538) (472) (967) (854)

First-stage, 596 school districts

−0.268∗∗∗ −0.265∗∗∗ −0.208∗∗∗ −0.214∗∗∗ −0.335∗∗∗ −0.323∗∗∗ - -

(0.083) (0.081) (0.076) (0.076) (0.083) (0.082) - -

Note: Weighted bootstrap confidence intervals are calculated with 1,000 bootstrap repetitions. Under-

smoothed CCT bandwidth is calculated following suggestions in Section 5, with CCT bandwidth set to

6.23 for the total expenditure outcome, 6.16 for the capital loading outcome, and 8.66 for the full-sample

first-stage analysis. These numbers are discussed in the footnote of Figure 1 as well.

Table 4 reports estimates of ATEs and average primary first-stage effects following

the proposed procedure. Section (1) of the table reports estimation and inference results

when the propensity score functions defined in Section 3.1 only use the constant as the

conditioning covariate X. Section (2) of the table reports results when the propensity

score function uses X = (1, Y1(d1)). Regression estimates of the two sections share the

same pattern. The longer-term ATE estimates for the total expenditure outcome are

smaller in this table, comparing to those reported in Table 3. Meanwhile, the longer-
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term ATE estimates for the capital loading outcome are larger in this table than those

reported in Table 3. However, due to the small sample size of this data application, we

cannot find any statistically significant difference between the estimates reported in the

two tables.

Table 4: Average Primary Treatment Effects – Proposed CIA Estimator

Immediate One-period-after Two-period-after Three-period-after

k=4.25 4.5 k=4.25 4.5 4.25 4.5 4.25 4.5

Section (1):

Total expenditures per pupil, 282 school districts

775 685 963 915 1, 273 1, 203 2, 333 2, 338

(604) (545) (733) (685) (1, 314) (1, 198) (2, 303) (1, 947)

Capital outlays per pupil, 282 school districts

279 200 399∗∗∗ 377∗∗∗ 1, 242∗∗∗ 1, 218∗∗∗ 2, 884∗∗∗ 2, 932∗∗∗

(215) (186) (153) (144) (418) (382) (791) (740)

First-stage, 596 school districts

-0.268∗∗∗ -0.265∗∗∗ -0.215∗ -0.233∗∗ -0.421∗∗∗ -0.426∗∗∗ - -

(0.083) (0.081) (0.113) (0.106) (0.119) (0.107) - -

Section (2):

Total expenditures per pupil, 282 school districts

775 685 811 779 867 828 1, 508 1, 571

(604) (545) (899) (854) (1, 897) (1, 878) (3, 629) (3, 769)

Capital outlays per pupil, 282 school districts

279 200 418∗∗ 389∗∗ 1, 368∗∗∗ 1, 327∗∗∗ 3, 196∗∗ 3, 229∗∗

(215) (186) (172) (161) (487) (478) (1, 282) (1, 341)

First-stage, 596 school districts

-0.268∗∗∗ -0.265∗∗∗ -0.136∗∗ -0.144∗∗ -0.243∗∗∗ -0.228∗∗∗ - -

(0.083) (0.081) (0.069) (0.070) (0.088) (0.087) - -

Note: Weighted bootstrap confidence intervals are calculated with 1000 bootstrap repetitions.

Undersmoothed CCT bandwidth is calculated following suggestions in Section 5, with CCT band-

width set to 6.23 for the total expenditure outcome, 6.16 for the capital loading outcome, and 8.66

for the full-sample first-stage analysis. These numbers are discussed in the footnote of Figure 1

as well. Section (1) report estimation results with constant only covariate X in the potential

propensity score functions defined in Section 3.1. Section (2) report results with X = (1, Y1(d1))

in the potential propensity score functions.
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7 Conclusion

Static RD models with a single eligibility test have been very popular in the last two

decades. Recently, more empirical studies are interested in situations where each individ-

ual could potentially participate in multiple RD experiments and hence receive multiple

treatments over a period of time. Most papers in the literature, however, either ignore

dynamics in such RD models or employ restrictive identifying assumptions. This paper

is the first to employ the conventional potential outcome framework to formulate a gen-

eral dynamic RD model. We propose several sets of identifying assumptions that are

much weaker than those used in the literature. A novel two-step semiparametric estima-

tion procedure and a weighted bootstrap inference method are proposed for estimation

and inference of longer-term average primary treatment effects that prohibit reception of

treatments after the focal round of RD. The proposed estimation and inference strategy

is adopted to revisit the study of local education bonds following CFR. For future re-

search, it will be interesting to extend the local MLE procedure adopted in the proposed

two-step estimation procedure to other traditional static RD models for the analysis of

first-stage and treatment effect heterogeneity.
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ONLINE APPENDIX

A Proofs for Identification Results

Proof of Lemma 2.1

First consider pairs of potential outcomes with only one flipped treatment status. Denote

the difference by Yk+τ ((`k−1, 1, η))−Yk+τ ((`k−1, 0, η)), where τ = 1, ..., T−k, k = 1, ..., T ,

` ∈ Lk−1 and η ∈ Lτ . If all elements of η are zero, the above difference in potential

outcomes is defined in (2.3). If all but the s-th element of η are zero, then the difference

Yk+τ ((`k−1, 1, η))− Yk+τ ((`k−1, 0, η))

=Yk+τ ((`k−1, 1,0))− Yk+τ ((`k−1, 0,0))

+ Yk+τ ((`k−1, 1, η))− Yk+τ ((`k−1, 1,0))−
(
Yk+τ ((`k−1, 0, η))− Yk+τ ((`k−1, 0,0))

)
=θ

`k−1

τ,k + θ
(`k−1,1,0s−1)
τ−s,k+s − θ(`k−1,0s)

τ−s,k+s . (A.1)

is a linear combination of the effects defined in (2.3), for all s = 1, ..., T − k. Let η′ be

the vector where η′s = 1 and all other elements are zero. If all but the s-th and s′-th

elements of η are zero, s < s′, then

Yk+τ ((`k−1, 1, η))− Yk+τ ((`k−1, 0, η))

=Yk+τ ((`k−1, 1, η′))− Yk+τ ((`k−1, 0, η′)) + Yk+τ ((`k−1, 1, η))− Yk+τ ((`k−1, 1, η′))

−
(
Yk+τ ((`k−1, 0, η))− Yk+τ ((`k−1, 0, η′))

)
,

where the first difference is between a pair of outcomes discussed in (A.1) and the other

two differences are between pairs of outcomes defined in (2.3). Similarly, the difference

Yk+τ ((`k−1, 1, η))−Yk+τ ((`k−1, 0, η)) with three or more non-zero elements in η could all

be represented by linear cominbations of the primary individual treatment effects defined

in equation (2.3).

Now consider pairs of potential outcomes with two flipped treatments. It is easy

to see that such differences, for example, Yk+τ ((`k−1, 1, η, 1, ρ))− Yk+τ ((`k−1, 0, η, 0, ρ)),

where τ = 2, ..., T − k, k = 1, ..., T , ` ∈ Lk−1, and (1, η, 1, ρ) ∈ Lτ could be represented

by a linear cominbation of differences of potential outcomes with only one flipped treat-

ment status, which has been discussed above, and therefore eventually be represented by
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linear cominbations of the primary individual treatment effects defined in equation (2.3).

Similarly, the difference of potential outcome with three or more flipped treatment status

could be defined by a linear cominbation of primary individual treatment effects defined

in (2.3). This completes the proof.

Proof of Lemma 2.2

We prove the result by induction. First, it has been shown in the main paper that

equation (2.6) holds for the first two time periods.

Suppose the result of the Lemma holds for any period s = 3, ..., T . This implies that

lim
z1↘0

E[Ys|Z1 = z1]− lim
z1↗0

E[Ys|Z1 = z1]

=E

 ∑
`s−1∈Ls−1

(
Ys(1, `

s−1) ·D2:s(1, `
s−1)− Yt(0, `s−1) ·D2:s(0, `

s−1)
)
|Z1 = 0


=
s−1∑
τ=0

θτ · πs−1−τ , (A.2)

where the first equality holds by the smoothness conditions in Assumption 2.1.

Now for period s+ 1, under Assumption 2.1,

lim
z1↘0

E[Ys+1|Z1 = z1]− lim
z1↗0

E[Ys+1|Z1 = z1]

=E

 ∑
`s−1∈Ls−1

Ys+1(1, `s−1, 1)D2:s(1, `
s−1)Ds+1(1, `s−1) + Ys+1(1, `s−1, 0)D2:s(1, `

s−1)(1−Ds+1(1, `s−1))|Z1 = 0


− E

 ∑
`s−1∈Ls−1

Ys+1(0, `s−1, 1)D2:s(0, `
s−1)Ds+1(0, `s−1) + Ys+1(0, `s−1, 0)D2:s(0, `

s−1)(1−Ds+1(0, `s−1))|Z1 = 0


=E

 ∑
`s−1∈Ls−1

(
Ys+1(1, `s−1, 0)D2:s(1, `

s−1)− Yt+1(0, `s−1, 0)D2:s(0, `
s−1)

)
|Z1 = 0


+ E

 ∑
`s−1∈Ls−1

(
Ys+1(1, `s−1, 1)− Ys+1(1, `s−1, 0)

)
D2:s(1, `

s−1)Ds+1(1, `s−1)|Z1 = 0


− E

 ∑
`s−1∈Ls−1

(
Ys+1(0, `s−1, 1)− Ys+1(0, `s−1, 0)

)
D2:s(0, `

s−1)Ds+1(0, `s−1)|Z1 = 0


≡A+ θ0 · E

 ∑
`s−1∈Ls−1

(
D2:s(1, `

s−1)Ds+1(1, `s−1)−D2:s(0, `
s−1)Ds+1(0, `s−1)

)
|Z1 = 0


≡A+ θ0 ·

 lim
z1↘0

E

 ∑
`s−1∈Ls−1

Ds+1(1, `s−1) ·D(1, `s−1)|Z1 = z1

− lim
z1↗0

E

 ∑
`s−1∈Ls−1

Ds+1(0, `s−1) ·D(0, `s−1)|Z1 = z1


=A+ θ0 · πs. (A.3)
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Now note that the only difference between the A term above and the conditional mean

expression

E

 ∑
`s−1∈Ls−1

(
Ys(1, `

s−1) ·D2:s(1, `
s−1)− Yt(0, `s−1) ·D2:s(0, `

s−1)
)
|Z1 = 0


in equation (A.2) is between potential outcomes Ys+1(1, `s−1, 0) and Ys(1, `

s−1). Since θτ

for τ = 0, 1, 2... are primary treatment effects that prohibit additional treatments after

the focal round, it is clear that

A =
s−1∑
τ=0

θτ+1 · πs−1−τ

Plugging the result into equation (A.3) therefore completes the proof.

Proof of Equation (2.7)

First, we state the updated smoothness conditions that condition on the k-th round

running variable.

Assumption A.1 For the fixed k = 1, ...,K − 2 considered in the paper, there exists an

ε > 0, such that

1. Zk+1 is continuous in zk+1 ∈ Nε with P [Zk+1 ≥ 0] ∈ (0, 1);

2. for τ = 0, 1, ..., (T − k − 1), E[Yτ+k+1(`τ+k+1)|D(`τ+k+1) = 1, Zk+1 = zk+1] is

continuous in zk+1 ∈ Nε for all `τ+k+1 ∈ Lτ+k+1.

3. P [D(`T ) = 1|Zk+1 = zk+1] is continuous in zk+1 ∈ Nε for all `T ∈ LT .

Under Assumption A.1,

lim
zk+1↘0

E[Yk+1|Zk+1 = zk+1]− lim
zk+1↗0

E[Yk+1|Zk+1 = zk+1]

=E

 ∑
`k∈Lk

Yk+1(`k, 1) ·D(`k)
∣∣Zk+1 = 0

− E
 ∑
`k∈Lk

Yk+1(`k, 0) ·D(`k)
∣∣Zk+1 = 0


=θ0 · E

 ∑
`k∈Lk

D(`k)
∣∣Zk+1 = 0


=θ0,
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and

lim
zk+1↘0

E[Yk+2|Zk+1 = zk+1]− lim
zk+1↗0

E[Yk+2|Zk+1 = zk+1]

=
∑
`k∈Lk

E[Yk+2(`k, 1, 1)D(`k)Dk+2(`k, 1) + Yk+2(`k, 1, 0)D(`k)(1−Dk+2(`k, 1))|Zk+1 = 0]

−
∑
`k∈Lk

E[Yk+2(`k, 0, 1)D(`k)Dk+2(`k, 0) + Yk+2(`k, 0, 0)D(`k)(1−Dk+2(`k, 0))|Zk+1 = 0]

=
∑
`k∈Lk

E[(Yk+2(`k, 1, 0)D(`k)|Zk+1 = 0]−
∑
`k∈Lk

E[Yk+2(`k, 0, 0)D(`k)|Zk+1 = 0]

+
∑
`k∈Lk

E
[(
Yk+2(`k, 1, 1)− Yk+2(`k, 1, 0)

)
D(`k)Dk+2(`k, 1)|Zk+1 = 0

]
−
∑
`k∈Lk

E
[(
Yk+2(`k, 0, 1)− Yk+2(`k, 0, 0)

)
D(`k)Dk+2(`k, 0)|Zk+1 = 0

]

=E

θ1 ·
∑
`k∈Lk

D(`k)
∣∣Zk+1 = 0

+ E

θ0 ·
∑
`k∈Lk

D(`k)Dk+2(`k, 1)
∣∣Zk+1 = 0


− E

θ0 ·
∑
`k∈Lk

D(`k)Dk+2(`k, 0)
∣∣Zk+1 = 0


=θ1 + θ0 ·

(
lim

zk+1↘0
E[Dk+2|Zk+1 = zk+1]− lim

zk+1↗0
E[Dk+2|Zk+1 = zk+1]

)
.

The general result for decomposing limzk+1↘0E[Yk+s|Zk+1 = zk+1]−limzk+1↗0E[Yk+s|Zk+1 =

zk+1] with any s ≥ 2 could then be proven by induction just as in the proof of Lemma 2.2.

Proof of Equation (3.1)

When τ = 1, equation (3.1) is clear. When τ = 2, 3, ..., T − 1, first we notice that for

d1 = 0, 1, the quasi-potential outcome Ỹτ+1(d1) could be decomposed, and

Ỹτ+1(d1) =Ỹτ+1(d1, 0) · (1−D2(d1)) + Ỹτ+1(d1, 1) ·D2(d1)

=Ỹτ+1(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=Ỹτ+1(d1, 0, 0) · (1−D3(d1, 0)) + Ỹτ+1(d1, 0, 1) ·D3(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=Ỹτ+1(d1,02) + θ̃
(d1,0)
τ−2,3 ·D3(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=Ỹτ+1(d1,03) · (1−D4(d1,02)) + Ỹτ+1(d1,02, 1) ·D4(d1,02)

+ θ̃
(d1,0)
τ−2,3 ·D3(d1, 0) + θ̃d1τ−1,2 ·D2(d1)
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=Ỹτ+1(d1,03) + θ̃
(d1,02)
τ−3,4 ·D4(d1,02) + θ̃

(d1,0)
τ−2,3 ·D3(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=...

=Yτ+1(d1,0τ ) + θ̃d1τ−1,2 ·D2(d1) +
τ−2∑
s=0

θ̃
(d1,0τ−1−s)
s,τ+1−s ·Dτ+1−s(d1,0τ−1−s).

Then, under smoothness conditions in Assumption 2.1,

lim
z1↘0

E[Yτ+1|Z1 = z1]− lim
z1↗0

E[Yτ+1|Z1 = z1]

=E[Ỹτ+1(1)|Z1 = 0]− E[Ỹτ+1(0)|Z1 = 0]

=E

[
Yτ+1(1,0τ ) + θ̃1

τ−1,2 ·D2(1) +

τ−2∑
s=0

θ̃
(1,0τ−1−s)
s,τ+1−s ·Dτ+1−s(1,0τ−1−s)

∣∣Z1 = 0

]

− E

[
Yτ+1(0,0τ ) + θ̃0

τ−1,2 ·D2(0) +

τ−2∑
s=0

θ̃
(0,0τ−1−s)
s,τ+1−s ·Dτ+1−s(0,0τ−1−s)

∣∣Z1 = 0

]

=E[θτ,1|Z1 = 0] + E
[
θ̃1
τ−1,2|D2(1) = 1, Z1 = 0

]
· P [D2(1) = 1|Z1 = 0]

− E
[
θ̃0
τ−1,2|D2(0) = 1, Z1 = 0

]
· P [D2(0) = 1|Z1 = 0]

+
τ−2∑
s=0

E
[
θ̃

(1,0τ−1−s)
s,τ+1−s |Dτ+1−s(1,0τ−1−s) = 1, Z1 = 0

]
P [Dτ+1−s(1,0τ−1−s) = 1|Z1 = 0]

−
τ−2∑
s=0

E
[
θ̃

(0,0τ−1−s)
s,τ+1−s |Dτ+1−s(0,0τ−1−s) = 1, Z1 = 0

]
P [Dτ+1−s(0,0τ−1−s) = 1|Z1 = 0] .

Proof of Lemma 3.1

By the definition of potential propensity scores, we see that under Assumption 3.2,

E[Y2(0, 1)|X,S2(0) = 1, Z2(0) ≥ 0, Z1 = 0]

= lim
z1↗0

E[Y2(0, 1)|X,S2(0) = 1, Z2(0) ≥ 0, Z1 = z1]

= lim
z1↗0

E[Y2(0, 1)1(Z2(0) ≥ 0)|X,S2(0) = 1, Z1 = z1]/P [Z2(0) ≥ 0|X,S2(0) = 1, Z1 = z1]

= lim
z1↗0

E[Y2D2/λ
0(X)|X,S2 = 1, Z1 = z1].

Together with Assumption 3.1, we also have that,

E[Y2(0, 0)|X,S2(0) = 1, Z2(0) ≥ 0, Z1 = 0] = E[Y2(0, 0)|X,S2(0) = 1, Z2(0) < 0, Z1 = 0]

= lim
z1↗0

E[Y2(0, 0)(Z2(0) < 0)|X,S2(0) = 1, Z1 = z1]/P [Z2(0) < 0|X,S2(0) = 1, Z1 = z1]

= lim
z1↗0

E[Y2(1−D2)/(1− λ0(X))|X,S2 = 1, Z1 = z1].
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The results above lead to the identification of E[θ0
0,2|D2(0) = 1, Z1 = 0], since

E[θ0
0,2|D2(0) = 1, Z1 = 0] = E[Y2(0, 1)− Y2(0, 0)|S2(0) = 1, Z2(0) ≥ 0, Z1 = 0]

= lim
z1↗0

E

[
E

[(
Y2D2

λ0(X)
− Y2(1−D2)

1− λ0(X)

) ∣∣X,S2 = 1, Z1 = z1

] ∣∣S2 = 1, Z2 ≥ 0, Z1 = z1

]

= lim
z1↗0

E
[
E
[
Y2(D2−λ0(X))
λ0(X)(1−λ0(X))

∣∣X,S2 = 1, Z1 = z1

]
· 1(Z2 ≥ 0)

∣∣S2 = 1, Z1 = z1

]
P [Z2 ≥ 0|S2 = 1, Z1 = z1]

= lim
z1↗0

E

[
Y2(D2 − λ0(X))

λ0(X)(1− λ0(X))
· P [Z2 ≥ 0|X,S2 = 1, Z1 = z1]

P [Z2 ≥ 0|S2 = 1, Z1 = z1]

∣∣S2 = 1, Z1 = z1

]
= lim
z1↗0

E

[
Y2(D2 − λ0(X))

(1− λ0(X))E[D2|S2 = 1, Z1 = z1]

∣∣S2 = 1, Z1 = z1

]
= lim
z1↗0

E

[
Y2(D2 − λ0(X))

(1− λ0(X))E[D2|S2 = 1, Z1 = z1]
· S2

P [S2 = 1|Z1 = z1]

∣∣Z1 = z1

]
= lim
z1↗0

E

[
Y2S2(D2 − λ0(X))

(1− λ0(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
.

And a similar identification strategy could be used to find that

E[θ1
0,2|D2(1) = 1, Z1 = 0] = lim

z1↘0
E

[
Y2S2(D2 − λ1(X))

(1− λ1(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
.

Plugging the results to equation (3.2) proves the lemma.

B Proofs for Results in Section 4

Proof of Lemma 4.1

Recall that

(γ̂1, β̂1
FS) = arg max

γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·[

D2i logL(X ′i(γ + βZ1i)) + (1−D2i) log
(
1− L(X ′i(γ + βZ1i))

)]
,

(γ̂0, β̂0
FS) = arg max

γ,β

n∑
i=1

S2i1(Z1i < 0)K

(
Z1i

h

)
·[

D2i logL(X ′i(γ + βZ1i)) + (1−D2i) log
(
1− L(X ′i(γ + βZ1i))

)]
.

We prove the lemma for γ̂1 following Cai et al. (2000). Results for γ̂0 could be shown

similarly. To simplify notations, we will drop the superscript 1 and subscript FS in the
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rest of the proof. That is, we have

(γ̂, β̂) = arg max
γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·[

D2i logL(X ′i(γ + βZ1i)) + (1−D2i) log
(
1− L(X ′i(γ + βZ1i))

)]
≡ arg max

γ,β
`n(γ, β). (B.1)

Recall that γ1 = limz↘0 γ(z) and β1 = limz↘0 γ
′(z). Define

γ∗ =
√
nh(γ − γ1), β∗ =

√
nh(hβ − hβ1),

γ̂∗ =
√
nh(γ̂1 − γ1), β̂∗ =

√
nh(hβ̂1 − hβ1),

θ = ((γ∗)′, (β∗)′)′, θ̂ = ((γ̂∗)′, (β̂∗)′)′,

X̃i = (X ′i
Z1iX

′
i

h
)′, δn =

1√
nh
, η(z, x) = (γ1 + β1z)′x.

Therefore, we have that

(γ + βZ1i)
′Xi = (γ1 + β1Z1i)

′Xi + δn((γ∗)′Xi + (β∗)′
Z1iXi

h
) = η(Z1i, Xi) + δnθ

′X̃i,

and we define `∗n(θ) as

`∗n(θ) =
n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·{[

D2i logL(η(Z1i, Xi) + δnθ
′X̃i) + (1−D2i) log

(
1− L(η(Z1i, Xi) + δnθ

′X̃i)
)]
−[

D2i logL(η(Z1i, Xi)) + (1−D2i) log
(
1− L(η(Z1i, Xi))

)]}
.

Given that (γ̂′, β̂′)′ maximizes `n(γ, β), we have θ̂ maximizes `∗n(θ).

Let qi(a) = D2i logL(a) + (1−D2i) log(1− L(a)), then

q′i(a) = D2i − L(a), q′′i (a) = −L(a)(1− L(a)), q′′′i (a) = (2L(a)− 1)L(a)(1− L(a)).

Taking a Taylor expansion of qi(η(Z1i, Xi) + δnθ
′X̃i) around η(Z1i, Xi) for each i, we

obtain

`∗n(θ) =

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·

{
(D2i − L(η(Z1i, Xi)))δnθ

′X̃i −
1

2
L(η(Z1i, Xi))(1− L(η(Z1i, Xi)))(δnθ

′X̃i)
2

+
1

6
(2L(η̄i)− 1)L(η̄i)(1− L(η̄i))(δnθ

′X̃i)
3
}
,
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where η̄i is between η(Z1i, Xi)) and η(Z1i, Xi)) + δnθ
′X̃i for each i. Note that for each

i, the expected value of the last term, S2i1(Z1i ≥ 0)K
(
Z1i
h

)
(2L(η̄i) − 1)L(η̄i)(1 −

L(η̄i))(δnθ
′X̃i)

3, is bounded by

O(δ3E|‖Xi‖ ·K(Z1i/h)|) = O(n−3/2 · h−3/2 · h) = O(n−1δn).

It then follows that

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· 1

6
(2L(η̄i)− 1)L(η̄i)(1− L(η̄i))(δnθ

′X̃i)
3 = O(δn) = o(1).

Therefore,

`∗n(θ) = Q′nθ −
1

2
θ′∆nθ + op(1), where

Qn = δn

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· (D2i − L(η(Z1i, Xi)))X̃i,

∆n = δ2
n

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· L(η(Z1i, Xi))(1− L(η(Z1i, Xi)))X̃iX̃

′
i.

For the term ∆n, we have that

E[∆n] =
1

h
E

S21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))

 X

Z1X
h

(X ′ Z1X
′

h

) .
Note that for any j = 0, 1, . . . and function g(.), by standard arguments,

1

h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))g(X1)

(Z1

h

)j]
=E
[
E[S2L(η(Z1, X))(1− L(η(Z1, X)))g(X1)|Z1]1(Z1 ≥ 0)

(Z1

h

)j
K

(
Z1

h

)]
=fz1(0)E[S2L(η(Z1, X))(1− L(η(Z1, X)))g(X1)|Z1 = 0]

∫
u≥0

ujK(u)du+ o(h).

Let

∆z = fz(0) ·

 µz,0 µz,1

µz,1 µz,2

 with µz,j =

∫
u≥0

ujK(u)du, for j = 0, 1, . . ..

Then, we have

E[∆n] =∆z ⊗ E
[
S2L(η(Z1, X))(1− L(η(Z1, X)))XX ′

∣∣∣Z1 = 0
]

+ o(1)

≡∆ + o(1). (B.2)
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where ⊗ denotes kronecker product. Similar arguments show that for each, (∆n)jk, the

(j, k)-th element of ∆n, V ar((∆n)jk) = O(δn) = o(1). Therefore, ∆n
p→ ∆ and it follows

that

`∗n(θ) = Q′nθ −
1

2
θ′∆θ + op(1).

Then by the quadratic approximation lemma in Fan and Gijbels. (1996), p. 210, we have

that

θ̂ = ∆−1Qn + op(1).

For the term Qn, we have that

E[Qn] = nδnE

[
S21(Z1 ≥ 0)K

(
Z1

h

)
· (D2 − L(η(Z1, X)))X̃

]
= nδnE

[
E[S2|X,Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (E[D2|S2 = 1, X, Z1]− L(η(Z1, X)))X̃

]
= nδnE

[
E[S2|X,Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (L(γ(Z1)′X)− L(η(Z1, X)))X̃

]
= O(nδnh · h2) = O(

√
nh5) = o(1).

To see this, note that L(γ(Z1)′X) = L(η(Z1, X)) + L(η̄)(1− L(η̄))(γ(Z1)′X − η(Z1, X))

where η̄ is between η(Z1, X) and γ(Z1)′X, so L(γ(Z1)′X)−L(η(Z1, X)) = Op(γ(Z1)′X−

η(Z1, X))) because L(η̄)(1 − L(η̄)) is bounded by 1/4. By a mean value expansion of

γ(Z1)′X around 0, we have γ(Z1)′X = (γ1 + β1Z1 + γ′′(Z̄1)Z2
1 )′X where Z̄1 is between

0 and Z1. Therefore, γ(Z1)′X − η(Z1, X)′ = γ′′(Z̄1)′Z2
1X. Therefore, L(γ(Z1)′X) −

L(η(Z1, X)) = Op(Z
2
1 ). Given that K(Z1/h) is non-zero when |Z1/h| ≤ 1 or equivalently,

|Z1| ≤ h, K
(
Z1
h

)
· (L(γ(Z1)′X) − L(η(Z1, X))) = Op(K(Z1/h)h2). It follows that the

expectation is O(nδnh ·h2) = O(
√
nh5) and Assumption 4.5(iii) implies that O(

√
nh5) =

o(1).
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In addition, the variance-covariance matrix of Qn is given by

V [Qn] = δ2nE[S21(Z1 ≥ 0)K2

(
Z1

h

)
· (D2 − L(η(Z1, X)))2X̃X̃ ′]

=
1

h
E[E[S2|Z1, X]1(Z1 ≥ 0)K2

(
Z1

h

)
· L(η(Z1, X))(1− L(η(Z1, X)))X̃X̃ ′] +O(h2)

=fz1(0)

 ν0,+ ν1,+

ν1,+ ν2,+

⊗ E [E[S2|Z1, X]L(η(Z1, X))(1− L(η(Z1, X)))XX ′
∣∣∣Z1 = 0

]
+O(h2)

≡Ω + o(1), (B.3)

where νk,+ =
∫
u≥0 u

kK2(u)du for k = 0, 1, . . ..

Finally, let ξi = S2i1(Z1i ≥ 0)K (Z1i/h) (D2i − L(η(Z1i, Xi)))X̃i. ξi satisfies the

Lyapounov’s condition since nδ3
nE[‖ξi‖3] = O(δn) → 0 by Assumption 4.4. It then

follows that Qn
d→ (0,Ω) and θ̂

d→ (0,∆−1Ω∆−1).

Proof of Theorem 4.1

We derive the asymptotics of α̂1 and α̂0. Recall that

(α̂1, β̂1) = arg min
α,β

∑
{i:Z1i≥0}

K

(
Z1i

h

)[
Y2i −

Y2iS2i(D2i − L(X ′iγ̂
1))

(1− L(X ′iγ̂
1))

− α− βZ1i

]2
,

(α̂0, β̂0) = arg min
α,β

∑
{i:Z1i<0}

K

(
Z1i

h

)[
Y2i −

Y2iS2i(D2i − L(X ′iγ̂
0))

(1− L(X ′iγ̂
0))

− α− βZ1i

]2
.

Note that the local linear estimator is additive in the dependent variables in that if

(α̂ay+bx, β̂ay+bx) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[
(aYi + bXi)− α− βZ1i

]2
,

(α̂y, β̂y) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[
Yi − α− βZ1i

]2
,

(α̂x, β̂x) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[
Xi − α− βZ1i

]2
,

then (α̂ay+bx, β̂ay+bx) = a(α̂y, β̂y)+b(α̂x, β̂x). In addition, suppose Yi satisfies Assumption

4.6 with Y2i replaced with Yi. By Chiang et al. (2019), we have

√
nh

 α̂y − αy

hβ̂y − hβy

 =
1√
nh

n∑
i=1

∆−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)
(Yi − E[Yi|Z1i])

 1

Z1i
h

+ op(1)
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where αy = limz↘0E[Y |Z = z], βy = limz↘0 dE[Y |Z = z]/dz. For each i, we take a

second order Taylor expansion of
Y2iS2i(D2i−L(X′iγ̂

1))

1−L(X′iγ̂
1)

around γ1 and

Y2iS2i(D2i − L(X ′iγ̂
1))

1− L(X ′iγ̂
1)

=
Y2iS2i(D2i − L(X ′iγ

1))

1− L(X ′iγ
1)

+
Y2iS2i(D2i − 1)L(X ′iγ

1)

1− L(X ′iγ
1)

X ′i(γ̂
1 − γ1) +Op(n

−1h−1),

where Op(n
−1h−1) holds by the fact that (γ̂1 − γ1) is Op(n

−1/2h−1/2) and its coefficient

is Op(1). Therefore, it is true that

α̂1 = α̂y2 − α̂Y2iS2i(D2i−L(X′
i
γ1))

1−L(X′
i
γ1)

− α̃′c(γ̂1 − γ1) + op(
√
nh)

= α̃1 − α̃′c(γ̂1 − γ1) + op(
√
nh)

where

α̃c = (α̃c,1, . . . , α̃c,1)′,

(α̃c,j , β̃c,j) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[Y2iS2i(D2i − 1)L(X ′iγ
1)

1− L(X ′iγ
1))

Xji − α− βZ1i

]2

for j = 1, . . . , k.

Then it is true that

√
nh(α̃1 − α1) =

1√
nh

n∑
i=1

(1 0)∆−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)(
Y2i − E[Y2i|Z1i]

− Y2iS2i(D2i − L(X ′iγ
1))

1− L(X ′iγ
1)

+ E
[Y2iS2i(D2i − L(X ′iγ

1))

1− L(X ′iγ
1)

|Z1i

]) 1

Z1i
h

+ op(1).

Given that

α̃c,j = αc,j + op(1), with αc,j = lim
z↘0

E

[
Y2S2(D2 − 1)L(X ′γ1)

1− L(X ′γ1))
Xj

∣∣∣Z = z

]
,

we have

√
nhα̂c = α̃′c

√
nh(γ̂1 − γ1) = α′c

√
nh(γ̂1 − γ1) + op(1)

= lim
z↘0

E

[
Y2S2(D2 − 1)L(X ′γ1)

1− L(X ′γ1))
X ′
∣∣∣Z = z

]√
nh(γ̂1 − γ1) + op(1)

≡ 1√
nh

n∑
i=1

O1
γ · φγ1,ni(D2i, S2i, Z1i, Xi) + op(1),
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where O1
γ is the gradient and φγ1,ni(D2i, Z1i, S2i, Xi) is the inference function of

√
nh(γ̂1−

γ1). Both notations are defined in Section 4.1. Then it is true that

√
nh(α̂1 − α1) =

1√
nh

n∑
i=1

(1 0)∆−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)(
Y2i − E[Y2i|Z1i]

− Y2iS2i(D2i − L(X ′iγ
1))

1− L(X ′iγ
1)

+ E
[Y2iS2i(D2i − L(X ′iγ

1))

1− L(X ′iγ
1)

|Z1i

]) 1

Z1i
h


− 1√

nh

n∑
i=1

O1
γ · φγ1,ni(D2i, S2i, Z1i, Xi) + op(1)

=
1√
nh

n∑
i=1

(
φ̃α1,ni(Y2i, D2i, S2i, Z1i, Xi)−51

γ · φγ1,ni(D2i, S2i, Z1i, Xi)
)

+ op(1)

≡ 1√
nh

n∑
i=1

φα1(Y2i, D2i, S2i, Z1i, Xi) + op(1).

Similarly, we have

√
nh(α̂0 − α0) =

1√
nh

n∑
i=1

(1, 0)′∆−1
z,−1(Z1i < 0)K

(
Z1i

h

)(
Y2i − E[Y2i|Z1i]

− Y2iS2i(D2i − L(X ′iγ
0))

1− L(X ′iγ
0)

+ E
[Y2iS2i(D2i − L(X ′iγ

0))

1− L(X ′iγ
0)

|Z1i

]) 1

Z1i
h


− 1√

nh

n∑
i=1

O0
γφγ0,ni(D2i, S2i, Z1i, Xi) + op(1)

≡ 1√
nh

n∑
i=1

φα0(Y2i, D2i, S2i, Z1i, Xi) + op(1).

These results are enough to derive the asymptotic normality of α̂1 and α̂0. It is straight-

forward to see that α̂1 and α̂0 are mutually independent.

Proof of Theorem 4.2

Recall that γ̂0,w, γ̂1,w, β̂0,w
FS , β̂1,w

FS are given by

(γ̂1,w, β̂1,w
FS ) = arg max

γ,β

n∑
i=1

WiS2i1(Z1i ≥ 0)K

(
Z1i

h

)
·[

D2i logL(X ′i(γ + βZ1i)) + (1−D2i) log
(
1− L(X ′i(γ + βZ1i))

)]
,

(γ̂0,w, β̂0,w
FS ) = arg max

γ,β

n∑
i=1

WiS2i1(Z1i < 0)K

(
Z1i

h

)
·[

D2i logL(X ′i(γ + βZ1i)) + (1−D2i) log
(
1− L(X ′i(γ + βZ1i))

)]
.
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Again, for brevity, we focus on the γ̂1,w case and drop the superscript 1 and subscript

FS for notational simplicity. Therefore, by the same argument, we have

`wn (θ) = (Qwn )′θ − 1

2
θ′∆w

n θ + op(1), where

Qwn = δn

n∑
i=1

WiS2i1(Z1i ≥ 0)K

(
Z1i

h

)
· (D2i − L(η(Z1i, Xi)))X̃i,

∆w
n = δ2

n

n∑
i=1

WiS2i1(Z1i ≥ 0)K

(
Z1i

h

)
· L(η(Z1i, Xi))(1− L(η(Z1i, Xi)))X̃iX̃

′
i.

Note that

E[∆w
n ] =

1

h
E

[
WS21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))X̃iX̃

′
i

]
=

1

h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))X̃iX̃

′
i

]
= ∆ + o(1),

where the second equality holds by the fact that W is independent of (S,Z1, X) and

E[W ] = 1.

Similar arguments show that for each, (∆w
n )jk, the (j, k)-th element of ∆w

n , V [(∆w
n )jk] =

O(δn) = o(1). Therefore, ∆w
n

p→ ∆ and it follows that

`wn (θ) = (Qwn )′θ − 1

2
θ′∆θ + op(1).

Let γ̂∗,w =
√
nh(γ̂1,w − γ1), β̂∗,w =

√
nh(hβ̂1,w − hβ1), θ̂w = ((γ̂∗,w)′, (β̂∗,w)′)′. Then,

by the quadratic approximation lemma again, we have that θ̂w = ∆−1Qwn +op(1). There-

fore,

θ̂w − θ̂ = ∆−1(Qwn −Qn) + op(1)

=

n∑
i=1

(Wi − 1)
[
S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· (D2i − L(η(Z1i, Xi)))X̃i

]
+ op(1).

Given that E[Wi − 1] = 0 and V ar(Wi − 1) = 1 and that {Wi − 1}ni=1 is independent

of the sample path, we can apply the standard multiplier bootstrap argument as in Ma

and Kosorok (2005) to show that conditional on the sample path with probability one,

θ̂w − θ̂ d→ (0,∆−1Ω∆−1) which shows the validity of the weighted bootstrap for the local

MLE estimator.
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Following the same arguments in the proof of Theorem 4.1, we can show that

√
nh(α̂1,w − α1) =

1√
nh

n∑
i=1

Wi · φα1(Y2i, D2i, S2i, Z1i, Xi) + op(1),

√
nh(α̂0,w − α0) =

1√
nh

n∑
i=1

Wi · φα0(Y2i, D2i, S2i, Z1i, Xi) + op(1),

and it follows that

√
nh(α̂1,w − α̂1) =

1√
nh

n∑
i=1

(Wi − 1) · φα1(Y2i, D2i, S2i, Z1i, Xi) + op(1),

√
nh(α̂0,w − α̂0) =

1√
nh

n∑
i=1

(Wi − 1) · φα0(Y2i, D2i, S2i, Z1i, Xi) + op(1).

Therefore, the two left hand side expressions converge to the same distributions as
√
nh(α̂1−α1) and

√
nh(α̂0−α0), respectively, conditional on sample path with probability

approaching one.

With all the results above, we know that
√
nh(ˆ̄θw1,1 − ˆ̄θ1,1) is asymptotic normal and

converges to the same limiting distribution as
√
nh(ˆ̄θ1,1 − θ̄1,1) conditional on sample

path with probability approaching one.

C More Simulation Results

This section extends DGPs 1-4 in Section 5 to to examine small sample performances of

proposed estimators of E[θτ,1|Z1 = 0] for τ = 0, 1, 2, 3. Like in Section 5, the proposed

estimators are valid under all four DGPs while the recursive CFR estimators are only

valid under DGPs 1 and 3.

Recall that 0t denote a t-dimensional vector of zeros. For all DGPs, let

X ∼ U [0, 10], Z1 ∼ X − 10 ·Beta(2, 2), (uy1, uy2, uy3, uy4) ∼ i.i.d. N(0, 0.5),

Yt(0t) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uyt, for t = 1, 2, 3, 4,

(us1, us2, us3) ∼ i.i.d. N(0, 1), St(0) = 1(ust ≥ 0), St(1) = 1(1 + ust ≥ 0),

(vz1, vz2, vz3) ∼ i.i.d. logis(0, 1), Zt(0t) = 0.3 + 0.1X1 + vzt, for t = 2, 3, 4.

Potential outcomes with nonzero treatment status are simulated with Yt(0t) defined

above and individual primary effects that are labeled by the number of periods from
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the focal treatment and the outcome as well as the treatment status in the very last

round so that the Markovian condition in Assumption 3.5 is satisfied. For example,

Y2(1, 1) = Y2(0, 0) + θ1,1 + θ1
0 and Y3(1, 0, 1) = Y3(0, 0, 0) + θ2,1 + θ0

0.

DGP 1: θ0,1 = θ0
0 = θ1

0 = 0.5, θ1,1 = θ0
1 = θ1

1 = 0.2, θ2,1 = θ0
2 = θ1

2 = 0.3, θ3,1 = 0.

DGP 2: θ0,1 = θ0
0 = 0.5, θ1

0 = 0.1, θ1,1 = θ0
1 = 0.2, θ1

1 = −0.2, θ2,1 = θ0
2 = 0.3,

θ1
2 = −0.3, θ3,1 = 0.

DGP 3: θ0,1 = θ0
0 = θ1

0 = 0.5+e0, θ1,1 = θ0
1 = θ1

1 = 0.2+e1, θ2,1 = θ0
2 = θ1

2 = 0.3+e2,

θ3,1 = e3, (e0, e1, e2, e3) ∼ i.i.d. U [−0.5, 0.5].

DGP 4: θ0,1 = 0.5, θ0
0 = 0.5 + 0.2(us2 + us3 + us4), θ1

0 = 0.5, θ1,1 = 0.2, θ0
1 =

0.2 + 0.3(us2 + us3), θ1
1 = 0.2, θ2,1 = 0.3, θ0

2 = 0.3 + 0.5us2, θ1
2 = 0.3, θ3,1 = 0.

Similarly, potential running variables are simulated with Zt(0t) and individual pri-

mary effects on the potential running variables. Specifically,

Z2(1) = Z2(0) + (1 X1)γ0, Z3(0, 1) = Z3(02) + (1 X1)γ0
0 ,

Z3(1, 0) = Z3(02) + (1 X1)γ1,1, Z3(1, 1) = Z3(02) + (1 X1)(γ1,1 + γ1
0),

Z4(0, 0, 1) = Z4(03) + (1 X1)γ0
0 , Z4(0, 1, 0) = Z4(03) + (1 X1)γ0

1 ,

Z4(0, 1, 1) = Z4(03) + (1 X1)(γ0
1 + γ1

0), Z4(1, 0, 0) = Z4(03) + (1 X1)γ2,1,

Z4(1, 1, 0) = Z4(03) + (1 X1)(γ2,1 + γ1
1), Z4(1, 0, 1) = Z4(03) + (1 X1)(γ2,1 + γ0

0),

γ0,1 = (−0.3 − 0.1), γ0
0 = (0.1 0.1), γ1

0 = (−0.2 − 0.1),

γ1,1 = γ0
1 = γ1

1 = γ2,1 = (−0.1 − 0.1).

Given the above potential random variables, observed random variables are defined

following the potential outcome framework discussed in Section 3.

Table 5 reports the average of the proposed and recursive CFR estimators among

1,000 simulations. The true value is 0.5, 0.2, 0.3, and 0 for the immediate, one-period-

after, two-period-after, and three-period-after ATEs. As is predicted by the theory,

the proposed estimators average around the true value among all four DGPs, while the

recursive estimators only perform well under DGPs 1 and 3.

Table 6 reports proportions of rejections in two-sided t-tests associated with proposed

ATE estimators. The first half of the table shows the size of the tests with the true value

of ATEs stated under the null. The second half of the table shows the power of the tests
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with the null set incorrectly to 0.3 for the immediate ATE and 0 for all other longer-term

ATEs. Thus, it is clear that the proposed method controls size well under the null and

has power going to one under the alternative.
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Table 5: Performance of Immediate, One-, Two-, and Three-period-after ATE Estimators

Immediate One-period-after Two-period-after Three-period-after

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

Proposed Estimation Strategy

DGP 1

n=2000 0.505 0.506 0.507 0.204 0.206 0.208 0.299 0.302 0.305 -0.001 0.001 0.003

n=4000 0.507 0.507 0.508 0.202 0.204 0.205 0.296 0.298 0.299 0.0001 0.001 0.003

n=8000 0.507 0.507 0.507 0.205 0.206 0.206 0.306 0.308 0.308 0.002 0.003 0.004

DGP 2

n=2000 0.503 0.504 0.505 0.189 0.192 0.194 0.292 0.295 0.298 0.007 0.009 0.011

n=4000 0.506 0.507 0.507 0.205 0.206 0.207 0.307 0.308 0.310 0.010 0.012 0.013

n=8000 0.506 0.507 0.507 0.202 0.203 0.203 0.307 0.307 0.307 0.012 0.013 0.013

DGP 3

n=2000 0.506 0.507 0.508 0.198 0.200 0.203 0.300 0.303 0.306 -0.014 -0.011 -0.008

n=4000 0.509 0.509 0.510 0.203 0.204 0.205 0.294 0.295 0.297 0.001 0.003 0.004

n=8000 0.508 0.509 0.509 0.202 0.202 0.203 0.304 0.304 0.305 0.006 0.007 0.007

DGP 4

n=2000 0.509 0.509 0.509 0.188 0.191 0.193 0.300 0.302 0.304 0.003 0.005 0.007

n=4000 0.505 0.506 0.507 0.198 0.200 0.201 0.303 0.304 0.306 0.017 0.018 0.019

n=8000 0.503 0.504 0.504 0.200 0.202 0.203 0.301 0.303 0.304 0.007 0.009 0.010

Recursive CFR Strategy

DGP 1

n=2000 0.505 0.506 0.507 0.209 0.210 0.211 0.310 0.311 0.312 0.008 0.010 0.011

n=4000 0.507 0.507 0.508 0.209 0.210 0.210 0.305 0.307 0.307 0.006 0.008 0.008

n=8000 0.507 0.507 0.507 0.207 0.208 0.208 0.310 0.311 0.312 0.007 0.008 0.009

DGP 2

n=2000 0.503 0.504 0.505 0.100 0.101 0.102 0.244 0.246 0.247 -0.095 -0.093 -0.092

n=4000 0.506 0.507 0.507 0.105 0.106 0.106 0.248 0.249 0.249 -0.099 -0.098 -0.097

n=8000 0.506 0.507 0.507 0.101 0.102 0.103 0.245 0.246 0.246 -0.099 -0.098 -0.097

DGP 3

n=2000 0.506 0.507 0.508 0.216 0.217 0.218 0.317 0.319 0.320 0.011 0.012 0.013

n=4000 0.509 0.509 0.510 0.208 0.209 0.210 0.308 0.309 0.310 0.011 0.012 0.013

n=8000 0.508 0.509 0.509 0.206 0.207 0.207 0.309 0.310 0.310 0.012 0.013 0.013

DGP 4

n=2000 0.509 0.509 0.509 0.171 0.172 0.172 0.253 0.254 0.254 -0.078 -0.077 -0.076

n=4000 0.505 0.506 0.507 0.170 0.171 0.172 0.254 0.255 0.256 -0.066 -0.066 -0.065

n=8000 0.503 0.504 0.504 0.171 0.172 0.173 0.252 0.253 0.254 -0.075 -0.074 -0.073

Note: All Monte Carlo experiments use 1,000 simulation repetitions and weighted bootstrap with 1,000 bootstrap

repetitions.
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Table 6: Immediate and One-period-after Average Primary Treatment Effects: Inference

of Proposed Estimators

Immediate One-period-after Two-period-after Three-period-after

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

Size of Two-sided T-tests

DGP 1

n=2000 0.058 0.063 0.062 0.067 0.073 0.069 0.043 0.042 0.040 0.058 0.062 0.057

n=4000 0.046 0.050 0.052 0.058 0.058 0.060 0.050 0.052 0.055 0.053 0.054 0.051

n=8000 0.059 0.059 0.061 0.050 0.045 0.046 0.060 0.059 0.057 0.049 0.042 0.044

DGP 2

n=2000 0.056 0.055 0.058 0.063 0.060 0.057 0.053 0.047 0.052 0.050 0.060 0.056

n=4000 0.055 0.055 0.059 0.055 0.056 0.060 0.061 0.065 0.063 0.064 0.061 0.061

n=8000 0.061 0.065 0.060 0.070 0.072 0.064 0.054 0.047 0.052 0.058 0.057 0.056

DGP 3

n=2000 0.061 0.057 0.054 0.068 0.065 0.067 0.057 0.054 0.051 0.061 0.060 0.063

n=4000 0.064 0.065 0.061 0.057 0.061 0.063 0.070 0.070 0.068 0.052 0.053 0.052

n=8000 0.053 0.052 0.051 0.047 0.040 0.041 0.055 0.055 0.057 0.066 0.063 0.061

DGP 4

n=2000 0.060 0.055 0.058 0.060 0.060 0.063 0.062 0.062 0.062 0.056 0.056 0.054

n=4000 0.048 0.049 0.049 0.064 0.064 0.063 0.058 0.061 0.061 0.050 0.046 0.044

n=8000 0.063 0.054 0.053 0.060 0.061 0.059 0.049 0.046 0.046 0.058 0.058 0.062

Power of Two-sided T-tests

DGP 1

n=2000 0.581 0.621 0.632 0.328 0.348 0.362 0.517 0.550 0.559 0.476 0.495 0.498

n=4000 0.854 0.875 0.886 0.519 0.553 0.571 0.800 0.823 0.831 0.795 0.812 0.818

n=8000 0.980 0.986 0.986 0.783 0.811 0.821 0.978 0.984 0.986 0.974 0.979 0.979

DGP 2

n=2000 0.584 0.611 0.618 0.307 0.319 0.332 0.507 0.525 0.538 0.450 0.467 0.472

n=4000 0.846 0.872 0.882 0.530 0.554 0.562 0.817 0.843 0.853 0.721 0.742 0.746

n=8000 0.975 0.982 0.983 0.767 0.787 0.797 0.969 0.973 0.979 0.947 0.953 0.958

DGP 3

n=2000 0.540 0.573 0.586 0.285 0.312 0.316 0.475 0.502 0.521 0.422 0.444 0.443

n=4000 0.799 0.827 0.839 0.499 0.523 0.533 0.709 0.733 0.744 0.660 0.672 0.679

n=8000 0.973 0.978 0.982 0.749 0.775 0.780 0.936 0.952 0.954 0.896 0.903 0.915

DGP 4

n=2000 0.614 0.639 0.650 0.296 0.308 0.316 0.470 0.493 0.507 0.608 0.627 0.636

n=4000 0.842 0.873 0.886 0.497 0.525 0.528 0.762 0.791 0.802 0.863 0.885 0.893

n=8000 0.975 0.984 0.990 0.780 0.812 0.822 0.949 0.963 0.969 0.993 0.995 0.997

Note: All Monte Carlo experiments use 1,000 simulation repetitions and weighted bootstrap with 1,000 bootstrap

repetitions. All t-tests use the 5% significance level.
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